nabu.stitching.stitcher.dumper.postprocessing
source module nabu.stitching.stitcher.dumper.postprocessing
Classes
-
OutputVolumeContext — Utils class to Manage the data volume creation and save it (data only !). target: used for volume stitching In the case of HDF5 we want to save this directly in the file to avoid keeping the full volume in memory. Insure also contain processing will be common between the different processing
-
OutputVolumeNoDDContext — Dedicated output volume context for saving a volume without Data Duplication (DD)
-
PostProcessingStitchingDumper — dumper to be used when save data during post-processing stitching (on reconstructed volume). Output is expected to be an NXtomo
-
PostProcessingStitchingDumperWithCache — PostProcessingStitchingDumper with intermediate cache in order to speed up writting. The cache is save to disk when full or when closing the dumper. Mostly convenient for HDF5
-
PostProcessingStitchingDumperNoDD — same as PostProcessingStitchingDumper but prevent to do data duplication. In this case we need to work on HDF5 file only
source class OutputVolumeContext(volume: VolumeBase, volume_shape: tuple, dtype: numpy.dtype, dumper)
Bases : AbstractContextManager
Utils class to Manage the data volume creation and save it (data only !). target: used for volume stitching In the case of HDF5 we want to save this directly in the file to avoid keeping the full volume in memory. Insure also contain processing will be common between the different processing
If stitching_sources_arr_shapes is provided this mean that we want to create stitching region and then create a VDS to avoid data duplication
source class OutputVolumeNoDDContext(volume: VolumeBase, volume_shape: tuple, dtype: numpy.dtype, dumper, stitching_sources_arr_shapes: Optional[tuple])
Bases : OutputVolumeContext
Dedicated output volume context for saving a volume without Data Duplication (DD)
source class PostProcessingStitchingDumper(configuration)
Bases : DumperBase
dumper to be used when save data during post-processing stitching (on reconstructed volume). Output is expected to be an NXtomo
Methods
-
create_output_dataset — function called at the beginning of the stitching to prepare output dataset
source method PostProcessingStitchingDumper.save_configuration()
source property PostProcessingStitchingDumper.output_identifier: VolumeIdentifier
source method PostProcessingStitchingDumper.create_output_dataset()
function called at the beginning of the stitching to prepare output dataset
source class PostProcessingStitchingDumperWithCache(configuration)
Bases : PostProcessingStitchingDumper
PostProcessingStitchingDumper with intermediate cache in order to speed up writting. The cache is save to disk when full or when closing the dumper. Mostly convenient for HDF5
Methods
-
save_stitched_frame — save the frame to the volume. In this use case save the frame to the buffer. Waiting to be dump later. We expect 'save_stitched_frame' to be called with contiguous frames (in the output volume space)
-
dump_cache — dump the first nb_frames to disk
source method PostProcessingStitchingDumperWithCache.init_cache(dump_axis, size, dtype)
Raises
-
ValueError
source method PostProcessingStitchingDumperWithCache.reset_cache()
source method PostProcessingStitchingDumperWithCache.set_final_volume_shape(shape)
source method PostProcessingStitchingDumperWithCache.save_stitched_frame(stitched_frame: numpy.ndarray, composition_cls: dict, i_frame: int, axis: int)
save the frame to the volume. In this use case save the frame to the buffer. Waiting to be dump later. We expect 'save_stitched_frame' to be called with contiguous frames (in the output volume space)
Raises
-
RuntimeError
source method PostProcessingStitchingDumperWithCache.dump_cache(nb_frames)
dump the first nb_frames to disk
Raises
-
RuntimeError
source class PostProcessingStitchingDumperNoDD(configuration)
Bases : PostProcessingStitchingDumper
same as PostProcessingStitchingDumper but prevent to do data duplication. In this case we need to work on HDF5 file only
Attributes
-
stitching_regions_hdf5_dataset : Optional[tuple] — hdf5 dataset storing the stitched regions
-
raw_regions_hdf5_dataset : Optional[tuple] — hdf5 raw dataset
Methods
-
create_output_dataset — function called at the beginning of the stitching to prepare output dataset
-
save_stitched_frame — Save the full stitched frame to disk
source method PostProcessingStitchingDumperNoDD.create_output_dataset()
function called at the beginning of the stitching to prepare output dataset
source staticmethod PostProcessingStitchingDumperNoDD.create_subset_selection(dataset: h5py.Dataset, slices: tuple) → h5py.VirtualSource
source method PostProcessingStitchingDumperNoDD.output_dataset(dataset: Optional[h5py.VirtualLayout])
Raises
-
TypeError
source property PostProcessingStitchingDumperNoDD.stitching_regions_hdf5_dataset: Optional[tuple]
hdf5 dataset storing the stitched regions
source property PostProcessingStitchingDumperNoDD.raw_regions_hdf5_dataset: Optional[tuple]
hdf5 raw dataset
source method PostProcessingStitchingDumperNoDD.save_stitched_frame(stitched_frame: numpy.ndarray, composition_cls: dict, i_frame: int, axis: int)
Save the full stitched frame to disk
Raises
-
ValueError