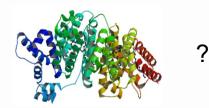
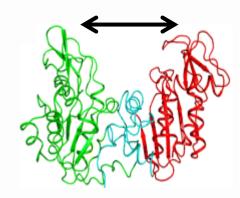

Automated data analysis on ESRF BM29

Martha Brennich (EMBL Grenoble)

Idealized bio-SAS experiment

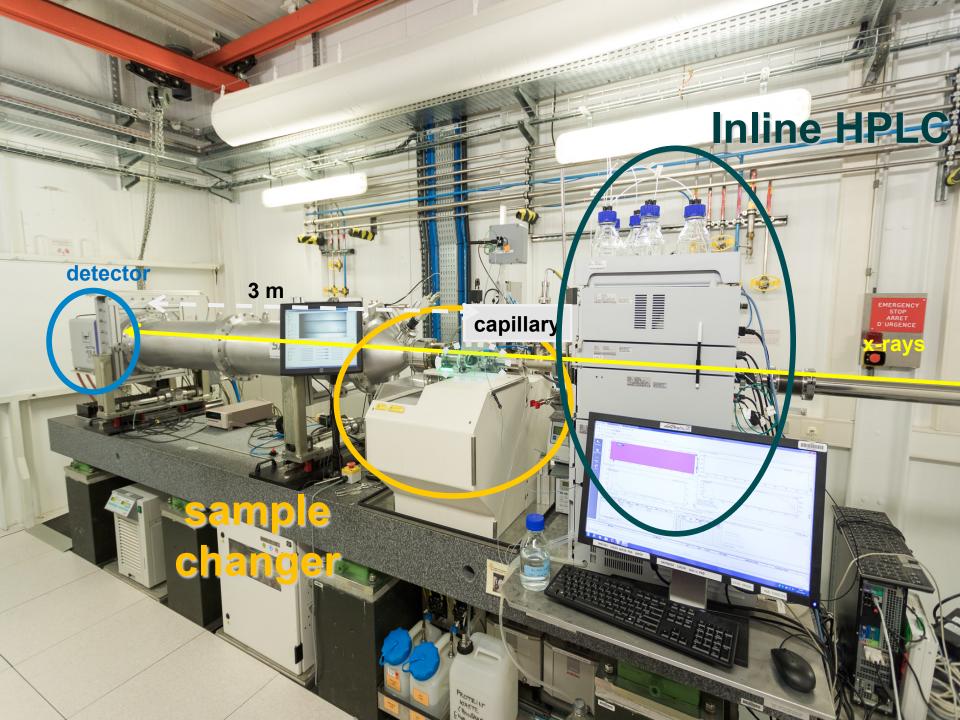




What can we learn from BioSAXS?

- Low-resolution structural information shape, overall fold
- Mean molecular weight, oligomeric state
- Mixing ratios
- Model validation
- Domain placement
- Complex structures
- Ab-initio models

. . .

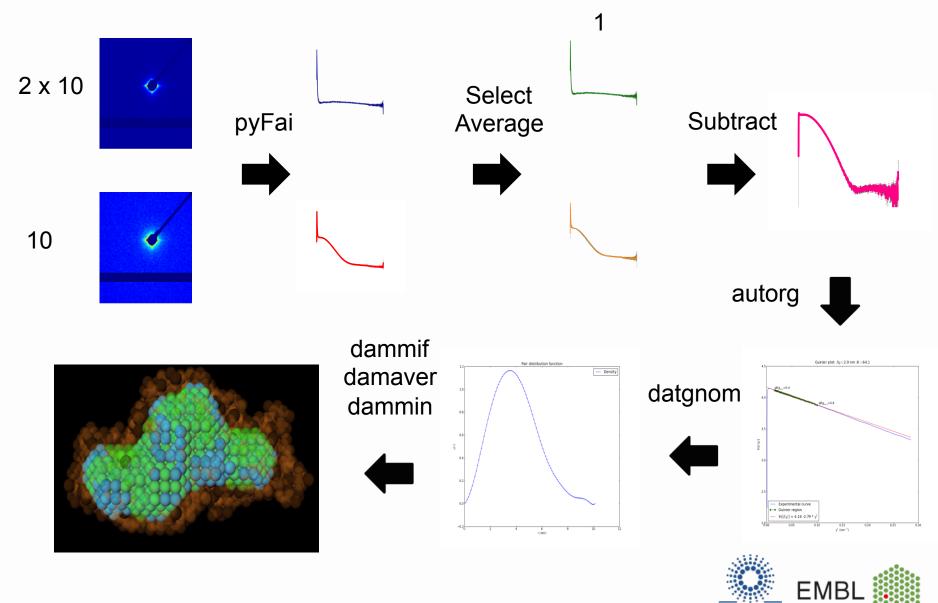

- Dedicated solution scattering beamline
- Optimized for macromolecules (4kDa -1MDa)
- Many "non-expert" users, short visits

Automated sample Handling

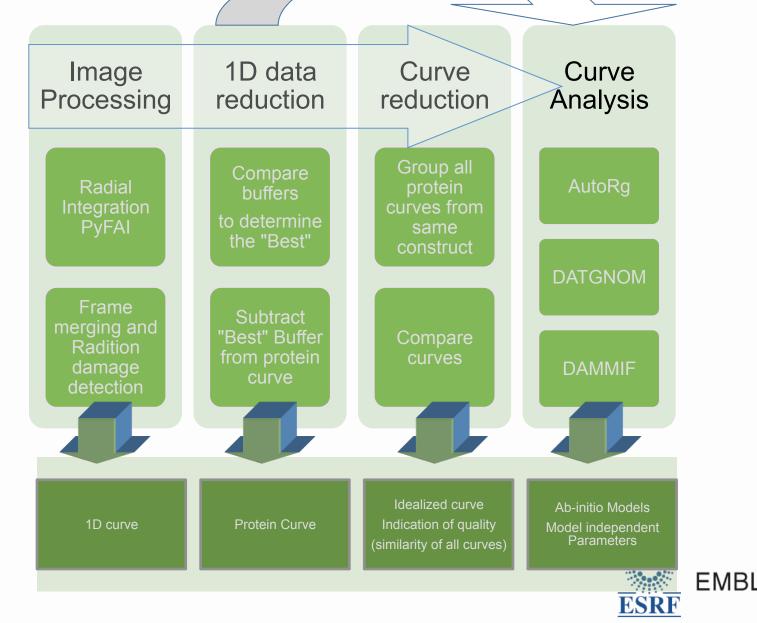
Automated data acquisition

Par	amet	ers —															_			_					
File				/da	ta/id	14e	h3/ir	ho	use/s	axs	_pilatus/Adam/	/Ma	ay/ABscript.xm	d		ad		ave	Save as						
Sar	nple	type		Gr	een						•														
Sto	rage	temper	ature	5.0	0 C		_	_	_	_	A														
Ext	ra flo	w time		30	s																				
Opt	timiza	ition		Sa	mple	co	de ar	nd S	SEU t	em	perature 🔻														
		eaning		×																					
	fer m	ode		Fir	st an	d At	fter	_		_	•														
His	tory			[20 [20	011/0	5/1 5/1	3 15. 3 15.	:36: :36:	12] 27]	NFC): Finish collect): Waiting for e): Cleaning): The data coll	nd	of flow							lear					
		Use	Туре		Pla	te	Ro	w	w	ell	Concentratio	n	Comments	Code	Visco	sity	Bufferna	ame	Transmission	Volum	e SEU Temp	Flow	Recup.	Wait Tir	ne D
1	1	×	Buffer	•	2	•	A	•	9	•	0.00 mg/ml	*	hepes ph7	BUFF1	Low	•	Buf1	•	100.0 %	30 u/l	•	×			,
2	1	×	Sample	•	2	-	A	-	1	-	1.00 mg/ml	•	Construct A	A	Low	-	Buf1	-	100.0 %	30 u/l	◆ 5.00 C ◆	×	×	0 sec	•
3	4	×	Sample	•	2	-	A	-	2	-	2.50 mg/ml	•	Construct A	A	Low	-	Buf1	•	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	•
4	1	×	Sample	•	2	-	A		3	-	5.00 mg/ml	•	Construct A	A	Low	-	Bufl	-	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	•
5	4	×	Sample	•	2	-	A	-	4	-	1.50 mg/ml	•	Construct B	в	Low		Buf1	-	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	•
6	4	×	Sample	-	2	-	A	-	5	-	3.00 mg/ml	•	Construct B	в	Low	-	Buf1	-	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	•
7	4	×	Sample	-	2	-	A	-	6	-	6.00 mg/ml	+	Construct B	в	Low	-	Buf1	•	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	•
8	4	×	Sample	-	2	-	в		1	-	1.00 mg/ml	•	Construct AB	AB	Low	-	Bufl	-	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	•
9	4	×	Sample	-	2	-	в	-	1	-	2.00 mg/ml	•	Construct AB	АВ	Low		Buf1	-	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	+
10	4	×	Sample	-	2	-	в	-	1	-	4.00 mg/ml	^	Construct AB	AB	Low	-	Buf1	•	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	•
11	1	×	Sample	-	2	-	в	-	1	-	8.00 mg/ml	•	Construct AB	АВ	Low	-	Buf1	•	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	•
12	4	×	Buffer	-	2	-	с	•	9	-	0.00 mg/ml	A .	pes ph7 ATP	BUFF2	Low	-	Buf2	•	100.0 %	30 u/l	•	×			,
13	1	×	Sample	•	2	-	с	•	1	-	1.00 mg/ml	•	AB + ATP	ABATP	Low		Buf2	•	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	•
14	1	×	Sample	-	2	-	с	-	2	-	2.00 mg/ml	•	AB + ATP	ABATP	Low	-	Buf2	•	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	•
15	4	×	Sample	-	2	-	с	-	3	-	4.00 mg/ml	+	AB + ATP	ABATP	Low	-	Buf2	•	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	•
16		×	Sample	-	2	-	с	-	4	-	8.00 mg/ml	-	AB + ATP	ABATP	Low	-	Buf2	-	100.0 %	30 u/l	\$ 5.00 C	×	×	0 sec	
•												_^													••
				Ndd	Sam	nle		_	_	_				Conve	Sample	_		_			Paste	Same	0		_
			,	auu	Jain	hig								Copys	ample			_				sampi	-		
							Clea	ar C	onfig	gura	ition									Close	2				

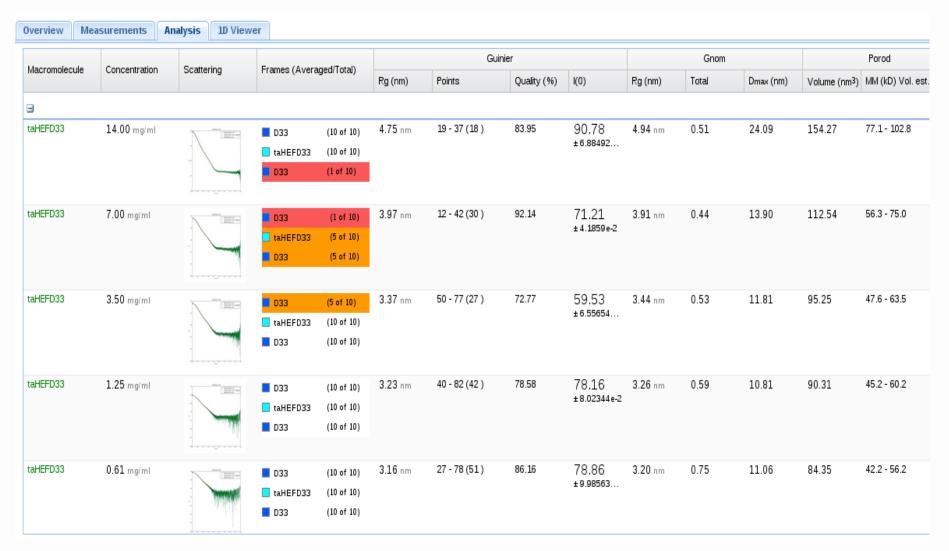
About 3 minutes per buffer/sample/buffer set


Actual acquisition rate: 10 frames/minute

ISPyB: Prepare your acquisition from

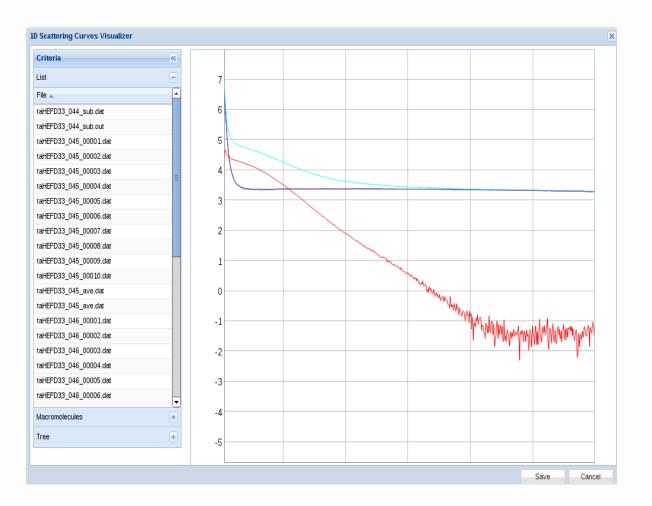

Define Measurements Define only the macromolecule's measurement you want to make. This wizard will add buffers' measurement needed for substraction automatically.														
Single Measure	ment Conce	ntration Series												
Macromolecules	S: PGK	×	Buffer:	AMP	¥									
How many unknow concentrations do you have?:														
Exposure. Temp).: 4	~	Vol. To Load (μl): 50	×			ansmissio 5):	n 100	4	* *			
Wait Time:	0	×	Viscosity:	low	•		Fl	ow:	\checkmark					
	0	× •	Viscosity:	low Add	~		Fl	ow:						
Wait Time: leasurements	0 Specimen	•	Viscosity:		Paramete		Fl	ow:						
		Buffer	Viscosity:				Flow	ow: Viscosity	Comments					
Macromo.	Specimen			Add	Paramete	rs					REMOVE			
Macromo.	Specimen Conc. (mg/ml)	V Buffer	Exp. Temp.	Add Vol. Load	Paramete Trans.	rs	Flow	Viscosity			REMOVE			

Data Processing - EDNA



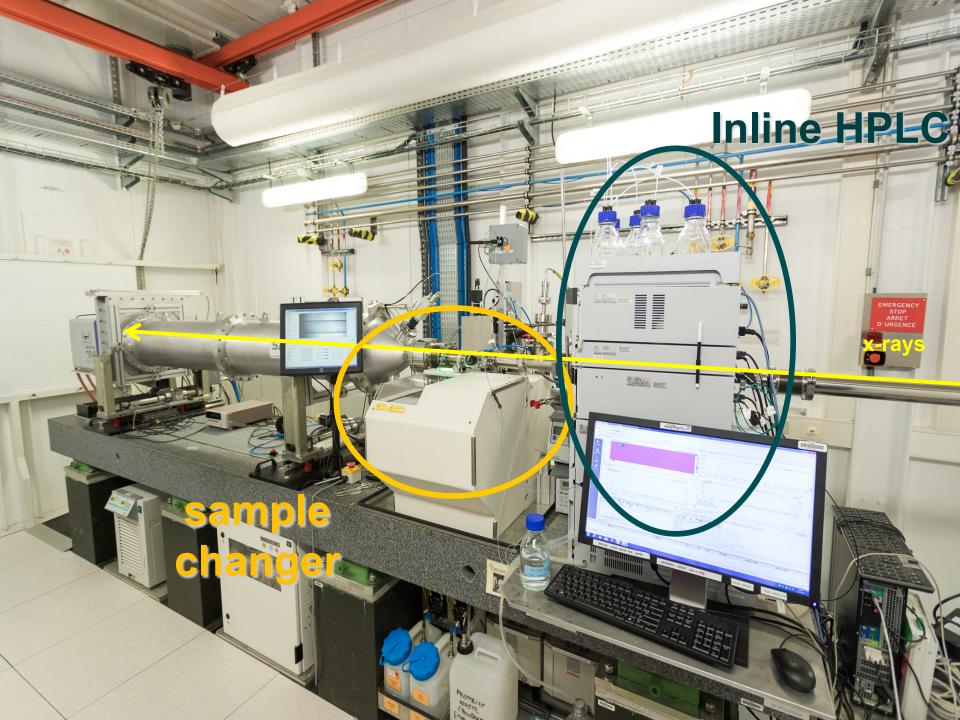
ESRF

Data Processing - FDNA



ISPYB: Data Analysis Overview

ISPYB: 1d Visualisation



ISPYB: Model Visualistation

lacromolecule	Concentration	Sector	Employ (Automation of Tanch		Gu	inier			Gnani			Porod
automolecule	Concentration	Scattering	Frames (Averaged/Total)	Rg (nm)	Paints	Quality (%)	I(0)	Rg (nm)	Total	Dmax (nn)	Volume (nmg)	MM (kD) Vol. est.
-EFD33	1.25 regimi		D33 (J0 of J0) twHEFD33 (J0 of J0) D33 (J0 of J0)	3.23 nm	40 - 82 (42)	78.58	78.16 ±8.02344+2	3.26 nm	0.59	10.81	90.31	45.2 - 60.2
	rfit Denmin Me	rged dannin pdb + Rai	skus: 3 🔭									
							9					
						S.		Q,	5			
							18		6	Ö,		
					330	ÓX,			35			
						28	1 33					
						ζŲ,	20					
							RA					

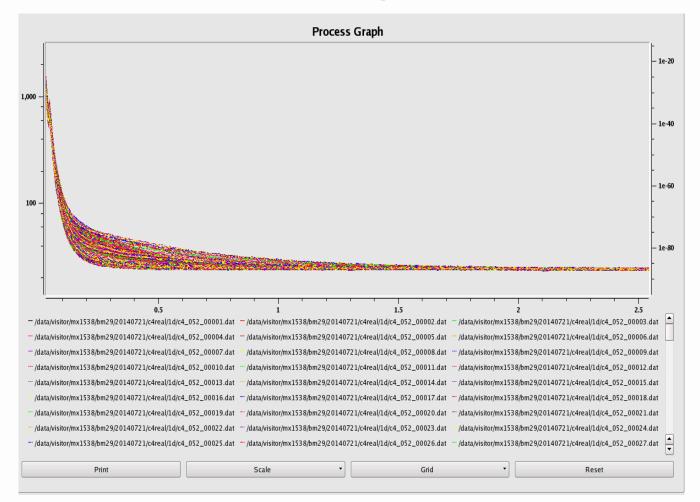
In-Situ HPLC – increase sample

monodispersity

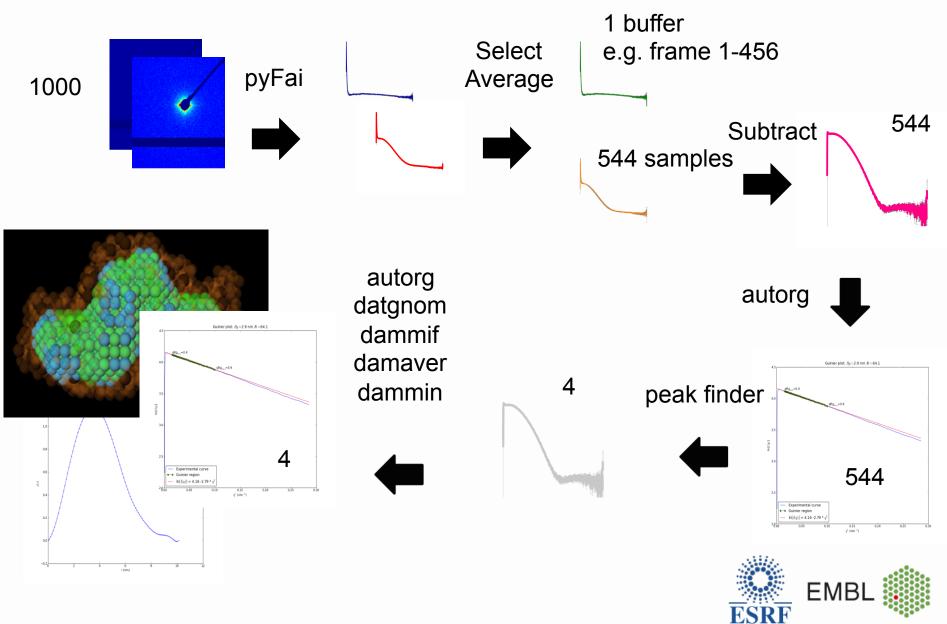
not controlled by beamline

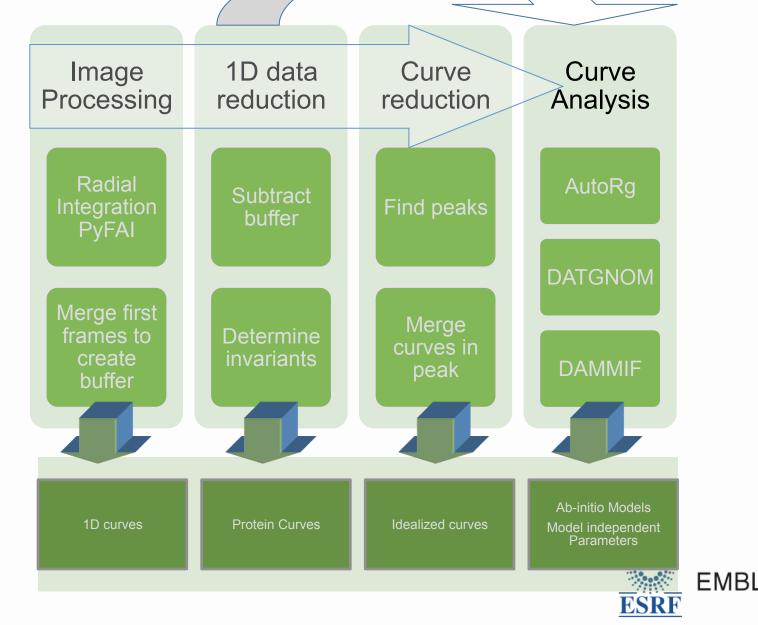
capillary

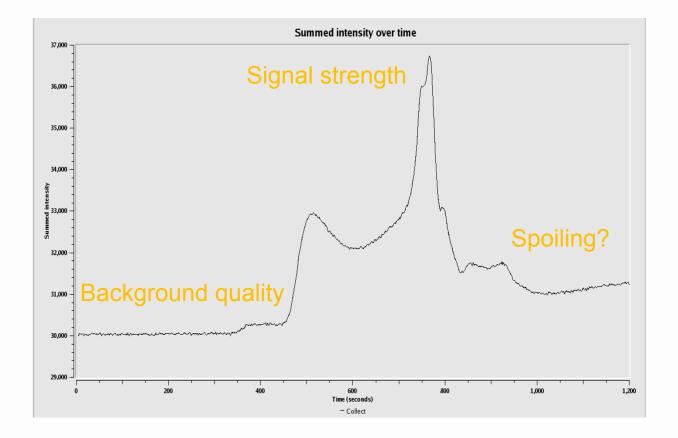
mode valve UV cell


automatic valve

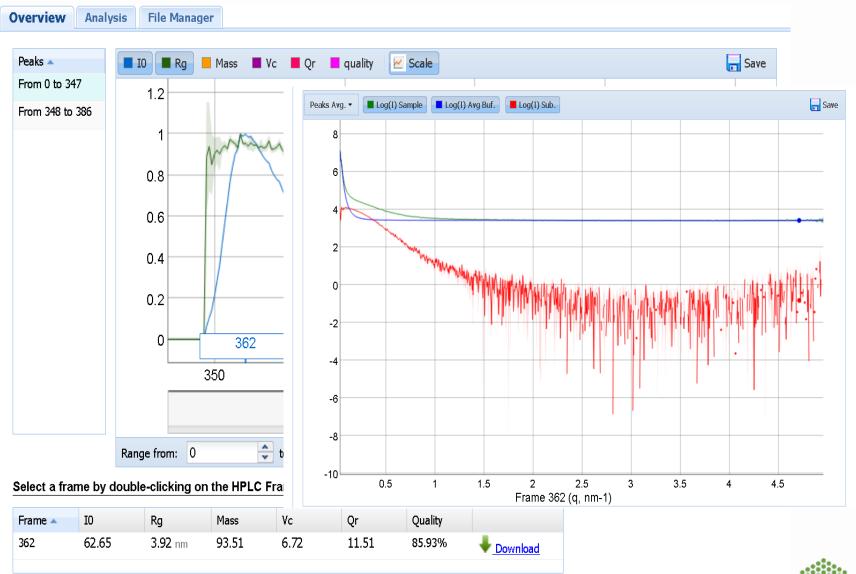
from GPC MAX pump


In-situ HPLC – data acquisition


1000 or more single measurements in a dataset


PROCESSING FOR HPLC

AutoMATED PROCESSING FOR HPLC



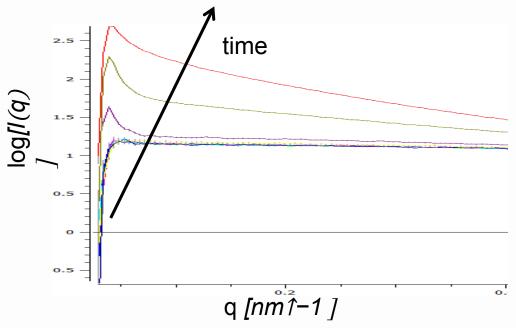
HPLC: Real Time feedback

ISPYB: HPLC overview

EDNA

- Data processing framework
- Collaboration between ESRF and Diamond
- Mostly used in macromolecular crystallography
- Python 2.7 based
- At BM29 as a TANGO device
- No direct user interaction: At BM29, the users only need to explicitly provide sample concentrations

BM29 Data Analysis Hardware

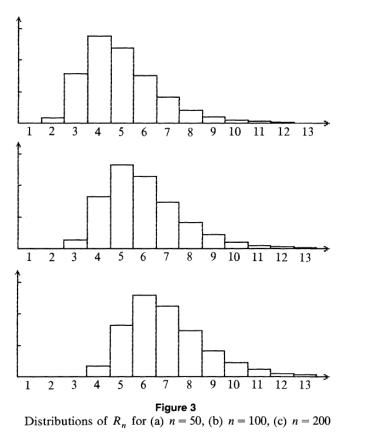

3 local machines for online processing, in principle each can do everything

Primary Processing	Bead modelling	HPLC processing
XEON 2 core, 3 GHz	2 x XEON 4 core, 2.26 GHz	XEON 6 core, 3.40 GHz
nVidia Quadro 4000, 2 GB memory	nVidia GeForce GTX 750 Ti, 2 GB memory	nVidia Quadro M2000, 4 GB memory
Before 2009	2011	2016

Why do we select frames?

Reject radiation damaged data

• Identify peaks in HPLC mode

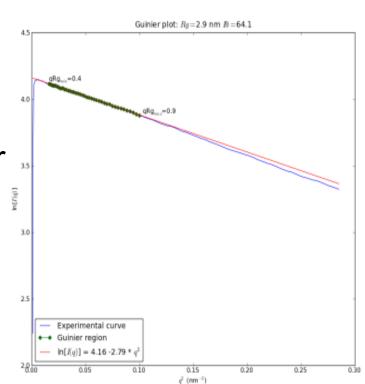


How do we select frames?

- Oversampled data, error bars of each data points nonideal (correlated, ...)
- Correlation Map (CORMAP) test, originally proposed by Daniel Franke at EMBL Hamburg
- Core idea: If two frames come from "the same" sample, the difference between should be random!
- Hence the distribution of + and differences corresponds to a series of coin tosses

CORMAP II

Mark F. Schilling *The College Mathematics Journal* Vol. 21, No. 3 (May, 1990), pp. 196-207



- Distribution is recursive for the number of coin tosses
- The longest run is actually pretty short!
- e.g. at BM29 with 1043
 q-bins in the range between
 7 and 14 points
- Available in freesas

AutoRg

- Forward scattering and radius of gyration are useful for identifying concentration effects on the scattering signal
- But the appropriate data range for the Guinier approximation is sample dependent and *a priori* unknown
- Score fits in different regions
- Originally used ATSAS version
- Moved to freeSAS implementation for HPLC

Beam center - the BM29 way

Operation				Display-						
Collect Re	process Browse	Beamline		Collect using SC	EH Scan	OH Scan	1D	2D raw	Robot	
Read only				🛃 - 📑 🔛	800% 🔻 💽 👻 🚱					
Directory	/data/visitor/mx1522/b	m29/20130615			,,, <u>_</u> _, _					
Prefix	test									
Run #	003		A V							
Frame #	00001		A V							
Time per frame	1.0 s		×							
Concentration	0.00 mg/ml		*							
Comments	bsa buffer									
Code	bsa									
	Show Beamline Param	ieters								
🕱 Radiation damag	ge (10^-f) 0.00	50.00	A							
Collect using SC		Collect us								
Notify when done	e Check beam	🗶 Energy ad	ljust pilatus							
Te	st	Collect								
	Abort									
	Collection status:	running								
sh: op	ened	Close								
		0.00000 -								
Transmission (curre	nt, new) 0.00003 %	0.00000	Filters							
Energy [keV] 12	.5000 keV	۸ (lew Energy	•						
Wavelength [A] 0.9	9919 Angstrom	New V	Wavelength	🔍 X: 796.00	Y: 161.50 Z: 0					
] (

Transmission 3•10-7

X,Y

ACKNOWLEDGMENTS

Petra Pernot

Mark Tully

Benoit Maillot

Adam Round

Andrew McCarthy

Thank you for Jérôme Kieffer Staffan Ohlsson

Matias Guijarre

Antonia Betava

our attention! Alejandro De Maria Antolinos

freesas

pipeline

