The High Energy Density (HED) instrument at the European X-ray Free Electron Laser

Clemens Prescher Grenoble, 7.02.2019

European XFEL

A new research facility

How it works

A closer look at the facility

About the European XFEL

- Organized as a non-profit corporation in 2009 with the mission of design, construction, operation, and development of the free-electron laser
- Supported by 11 partner countries
- Germany (federal government, city-state of Hamburg, and state of Schleswig-Holstein) covers 58% of the costs; Russia contributes 27%; each of the other international shareholders 1–3%
- Total budget for construction (including commissioning)
 - 1.22 billion € at 2005 prices (div by 6: 200 M€ per scientific instrument)
 - 600 M€ contributed in cash, over 550 M€ as in-kind contributions (mainly manufacture of parts for the facility)

European XFEL

Beamlines and Instruments

- First lasing in SASE1 with up to 1 mJ
- Start of user operation (SASE1)
- Start of user operation (HED)

May 2017

Sept 2017

May 2018

Comparison: XFEL and Synchrotron

		HEATTON Magnet Synchrotron Light
	European XFEL	ESRF (HPLF after upgrade)
Pulse length	5 - 100 fs	~ 100 ps
Energy range	5 – 25 keV	$5-25 \text{ keV} \rightarrow > 60 \text{ keV}$
# photons/pulse	10 ¹² – 10 ¹³	10 ⁸⁻⁹ – 10 ¹⁰
bandwidth	0.1 % (seeded) ~ 1 % (SASE)	~ 3 % → ~ 1%
Pointing stability	~ +/- 10 um	< 1um

XFEL properties at the HED instrument (SASE2)

Fully tunable between	3 – 25 keV (3 – 5 keV with limited performance)		
Pulse duration	2 – 100 fs		
Number of photons per pulse	~10 ¹⁰ (25 keV), ~10 ¹² (5 keV)		
Spot size on sample	sub-μm (HIBEF), few μm, 20 – 30 μm, 200 – 300 μm, few mm		
Seeded beam	First SASE beamline to be seeded; available soon after initial commissioning		
Repetition rate	shot on demand (pulse picker), 10 Hz – 27000 pulses/sec		

HED: unique capabilities

Couple XFEL beam to powerful drivers

Diamond Anvil Cells (dynamic DAC; pulsed laser heated DAC; double-stage DAC)

Powerful optical lasers(100 J 15 ns 10 Hz; 400 TW 30 fs 10 Hz)

 XFEL split&delay line (x-ray pump-probe) (2-20 ps delay, depending on energy)

□ Up to 60 T pulsed magnetic field coil

HED Science Agenda

HED hutch overview

Day-1 x-ray detector suite at HED

Inside IC1 in vacuum

Parameters	ePix100	ePix10k	Jungfrau	Gotthard-I
	SLAC	SLAC	PSI	PSI
Sensor	300 µm Si	300 µm Si	320 μm Si (upgrade 450 μm Si)	320 µm Si
Sensor size (pixel)	704x768 (35x38 mm ²)	352x384 (35x38 mm ²)	512x1024 (40x80 mm ²)	1x1280 (8x64 mm ²)
Pixel size (µm)	50	100	75	50
Dynamic range	10 ² (@ 8 keV)	10 ⁴ (@ 8 keV)	10 ⁴ (@ 12 keV)	10 ⁴ (@ 12 keV)
Noise (eV)	< 280	< 560	< 450	< 900
Repetition (Hz)	120	120	2000 (200 tested) 0.5MHz in burst mode, 16 images on-chip memory	40,000 0.8MHz in burst mode, 128 images digital memory
# of modules	2	3	4	2

One chamber for multiple standard XRD setups

Shock Setup

Coverage on 2 Varex 4343 CT (perp. config.)

Shock Setup

different shock geometries

Shock Setup

AGIPD detector

Exploitinig the timing structure of the XFEL bunch train

Sensor

- day 1: Si 500 µm, later high-Z (GaAs)
- pixel size: 200 μm · 200 μm
- 1 M-pixel: 8 twin modules with 2 · 512 pixel · 128 pixel
- 352 images at 4.5 MHz

AGIPD detector

Exploitinig the timing structure of the XFEL bunch train

Detector Bench

Detector Bench

Rail system

docked to interaction chamber 2

parking position

docked to interaction chamber 1

Thank you

Contact

DESY. Deutsches Elektronen-Synchrotron Clemens Prescher FS-PS clemens.prescher@desy.de

www.desy.de