

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 2

Python Fast Azimuthal Integration tool-set

Data reduction tools for
scattering experiments

Jérôme Kieffer
Online data analysis @ ESRF

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 3

Layout

● Power diffraction and scattering of X-Rays

● What is azimuthal integration of 2D detector data ?

● The need for faster data processing …

● … without compromising quality

● PyFAI:

– Ecosystem and user community

– The silx collaboration

– Latest developments: 3D view of the experimental setup

● Conclusions

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 4

X-ray scattering experiments
Source: Wikipedia
CC-BY-SA: Jeff Dahl

X ray
Monochromatic

2D camera
● Light is reflected as on mirror:

– No energy change (elastic scattering)

– Direction of diffracted beam depend on the crystalline cell and its orientation

– Intensity of the diffracted beam depend on the the content of the cell

→ Nobel price of Bragg (1915)

● Multiple small crystals (powder)

– Isotropic cones giving conics (mainly ellipses)
when intersected with the detector

Ice ring: diffraction
from powder

Crystalline
sample

Bragg spots:
diffraction from
single crystal

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 5

Powder diffraction and small angle scattering

Application of powder diffraction:

– Phase identification (mapping)

– Crystallinity

– Lattice parameters

– Thermal expansion

– Phase transition

– Crystal structure

– Strain and crystallite size

Application of small angle scattering

– Micro/nano-scale structure

– Particle shape

– Protein domains

– Protein folding

– Colloids

● Both rely on the same transformation: 2D image → azimuthal average

Azimuthal

integration

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 6

Many different tools exists …

● FIT2D

– MIT licensed from ESRF, written in Fortran, now discontinued

● XRDUA

– GPL licensed from U. Antwerp written in IDL, focuses of diffraction mapping

● Dawn

– EPL license from Diamond Light Source, written in Java

● DataSqueeze

– Freeware from U. Pennsylvania

● Foxtrot

– Commercial, from Xenocs & synchrotron Soleil, written Java

● Maud

– Freeware from U. Trento, written in Java

● GSAS-II

– Freeware tool from U.Chicago & APS, written in Python

● Scikit-beam

– BSD licensed from NSLS-II & BNL, written in Python.

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 7

Concepts in PyFAI

● Image

2D array of pixels as numpy array
read using silx, fabio, h5py, ...

● Azimuthal integrator: core object

● powder diagram using integrate1d

● “cake” image, azimuthally regrouped using integrate2d

● Detector

● Calculates the pixel position (center and corners)

● Calculate or store the mask

→ saved as a HDF5 file

● Geometry

Position of the detector from the sample & incoming beam

→ saved as PONI-file

http://www.silx.org/doc/pyFAI/dev/geometry.html#detector-position

http://www.silx.org/doc/pyFAI/dev/geometry.html#detector-position

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 8

Geometry in pyFAI

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 9

● The determination of the geometry is also known as calibration

– The prerequisite is:

● detector geometry and mask,

● calibrant (LaB6, CeO2, AgBh, …)

● wavelength or energy used

– Only the position of the detector and the rotation needs to be refined:

● 3 translations: dist, poni1 and poni2

● 3 rotations: rot1, rot2, rot3

● It is divided into 4 major steps:

1) Extraction of groups of peaks

2) Identification of peaks and groups of peaks belonging to same ring

3) Least-squares refinement of the geometry parameters on peak position

4) Validation by an human being of the geometry

● PyFAI assumes this setup does not change during the experiment

● Tutorial:

http://www.silx.org/doc/pyFAI/dev/usage/cookbook/calib-gui/index.html

Calibration in pyFAI

http://www.silx.org/doc/pyFAI/dev/usage/cookbook/calib-gui/index.html

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 10

What happens during an integration

1) Get the pixel coordinates from the detector, in meter.

There are 3 coordinates per pixel corner, and usually 4 corners per pixel.

1Mpix image → 48 Mbyte !

2) Offset the detector's origin to the PONI and rotate around the sample

3) Calculate the radial (2q) and azimuthal (c) positions of each corner

4) Assign each pixel to one or multiple bins.

If a look-up table is used, just store the fraction of the pixel.

Then for each bin sum the content of all contributing pixels.

5) Histogram bin position with associated intensities

6) Histogram bin position with associated normalizations (i.e. solid angle)

7) Return bin position and the ratio of sum of intensities / sum of norm.

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 11

● Pixel-wise corrections:

Where: I0 is the incoming flux (pixel independent)

– Iraw and Idark are the signal measured from the detector

– F is the flat-field correction

– Ω is the solid angle for this pixel

– P is the polarization factor

– A is the parallax correction factor

● Averaging over a bin defined by the radius r:

Where ci is the fraction of the pixel i contributing to bin r

● Associated error propagated:

– Assuming there is no correlation
between pixels

– Can create correlation between bins

I cor=
I raw−I dark

F⋅Ω⋅P⋅A⋅I 0

=
signal

normalization

How it works

⟨ I ⟩r=

∑
i∈binr

c i⋅signal i

∑
i∈binr

c i⋅normalizationi

σ (⟨ I ⟩r)=
√ ∑

i∈bin r

c i
2
⋅variancei

∑
i∈bin r

c i⋅normalizationi

Math from Kieffer et al.; J. Synch. Radiation (2020) accepted

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 12

Example of simplified implementation in Python

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 13

Speed matters ...

● New EBS source

– 50x brighter

– Starts in March 2020 !

● Faster detectors

– Eiger2 detector (2-20 kHz)

– Jungfrau detector (2 kHz)
→ Stream limited to 2 Gigabyte/s/detector !

Source: UCLA Coherent Imaging

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 14

The gap between computing and acquisition grows

● Most other codes use the same algorithm based on histograms …
… and reach the same speed:

– Fit2D written in Fortran

– SPD written in C

– Foxtrot written in Java

● The algorithm needs to be changed !

– Histograms cannot easily/efficiently be parallelized !

– Re-develop based on parallel algorithms
→ CSR dot product is many-core friendly
Described in https://arxiv.org/abs/1412.6367v1

https://arxiv.org/abs/1412.6367v1

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 15

Look-up table integration using only Python

Sources of this demo available on:
https://gist.github.com/kif/ab37c61351d8238f90245b0afb56192e

https://gist.github.com/kif/ab37c61351d8238f90245b0afb56192e

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 16

Advantages of histograms vs sparse matrix multiplication

● Easier to understand

● Low memory consumption

● Fast initialization

● Faster, even on a single core

● Many-core friendly

– OpenMP and OpenCL

● Pretty slow

● Hardly parallelizable

● Slower initialization

● The sparse matrix can be large

Histograms Sparse matrix multiplication

Pro

Con

Rule of thumb: < 5 frames ≥ 5 frames

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 17

Benchmark: Let’s speak about speed !

GPU cluster foreseen for ESRF’s restart and online data analysis, up to 4x V100 per computer

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 18

Moiré effect

High frequency noise issue

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 19

Example with SAXS data integrated in 2D

Pilatus 200k:
~500 x 400 pixels

2D averaging over 512x360 bins

Without pixel splitting With pixel splitting

⚠ ️creates bin cross-correlation ⚠

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 20

Pixel splitting schemes available in pyFAI

● No pixel splitting: default histograms

– Each pixel contributes to a single bin of the result

– No bin correlation but more noisy

– The pixel has no surface: sharpest peaks

● Bounding-box pixel splitting

– The smoothest integrated curve

– Blurs a bit the signal

● Pseudo pixel splitting

– Scale down the bounding box to the pixel area,
before splitting.

– Good cost/precision compromise, similar to FIT2D

● Full pixel splitting

– Split each pixel as a polygon on the output bins.

– Costly high-precision choice

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 21

Impact of pixel splitting on integration speed

● Histogram based algorithms:

– Each pixel is split over the bins it covers.

– The corner coordinates have to be calculated (4x slower initialization)

– The slow down is function of the oversampling factor, for every image

● Sparse matrix multiplication based algorithms

– The sparse matrix contains already the pixel splitting scheme

– Longer initialization time related to the oversampling factor

– There are NO performance penalty on the integration itself

All those consideration are independent of the programming language

Nevertheless, Python which is interpreted is expected to be 1000x slower than:
● compiled code like C, C++, Fortran, ...
● JIT compiled code like Java, Julia or numba

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 22

Layers in pyFAI

● Applications level:

– GUI applications: pyFAI-calib2, pyFAI-integrate, diff_map

– Scriptable applications:pyFAI-average, pyFAI-saxs, pyFAI-waxs, diff_tomo, …

● Python interface:

– Top level: azimuthal integrator

– Mid level: calibrant, detector, geometry, calibration

– Low level: rebinning/histogramming engines (Cython with OpenMP or OpenCL)

● Question: how to define the right balance ?

It is up to you !

● In this tutorial, only applications in bold will be demonstrated

F
l
e
x
i
b
i
l
i
t
y

E
a
s
e

o
f

u
s
e

Ideally used from

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 23

Project management

Silx & pyFAI

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 24

PyFAI is yet another azimuthal integration tool

● Written in Python (compatible with 2.7, 3.4, 3.5, 3.6, 3.7 & 3.8)

– Free, fast and portable

– MIT licensed: compatible with both science & business

– Part of the silx collaboration on data analysis initiated by ESRF

– Graphical user interface using Qt5

● Open to collaboration

– About 20 direct contributors,

● Mainly from ESRF

● Also from other synchrotrons and XFELs:

– Soleil, NSLS-II, Petra-III, Eu-XFEL
● Industrial contributions from Xenocs

– Used by > 40 other projects from all the largest X-ray sources in the world

● EuXFEL, SLAC, ALS, APS, NSLS-II, Petra-III, Soleil, Diamond, SLS, Max-IV, …

● Avoid compromises: no difficulty is hidden

● science does not suffer approximations

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 25

User community of pyFAI

● PyFAI is used in most European and American synchrotons/FELs

● User support is provided via the mailing list: pyFAI@esrf.fr

– Archived on http://www.silx.org/lurker/list/pyfai.en.html

– 137 people subscribed to the list (Jan 2020; 112 in 2018, 132 in 2019)

– limited activity (~1 thread/month)

http://www.silx.org/doc/pyFAI/dev/project.html#getting-help

PyFAI mailing list subscriber

grouped by mail domain

ESRF

France academic

Germany academic

Europe, other ac.

Gmail or Hotmail

USA academic

Private companies

Other academic

http://www.silx.org/doc/pyFAI/dev/project.html#getting-help

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 26

Reasons to chose pyFAI

● Faster than others

– First tool using sparse matrix multiplication to perform integration

– All computation intensive kernel are ported to C, C++ or OpenCL

– PyFAI is the only azimuthal integration tool benefiting from GPU

● More versatile (hackable) than other

– Many integration space already exists ...

● you can add your own easily

– It’s geometry is so generic it matches all configuration

● SAXS, WAXS …

– Most detectors are already defined

● Each detector can be adapted, and saved in a Nexus file

– It has a nice user interface thanks to Valentin !

● Part of the silx collaboration

– Bus-count slightly larger than one !

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 27

silx-kit: join efforts, share the maintenance

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 28

silx-kit: Shared development around:

● User interface

– Common interface to Qt

– Common visualization widgets

● GPU computing

– Common initialization

● Scientific data analysis

– Multi-threaded implementation of core algorithms

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 29

Management of the silx-kit project

● Public project hosted at github

https://github.com/silx-kit/silx

● Continuous testing

Linux, Windows and macOS

● Nightly builds

– Debian packages

● Weekly meetings

● Quarterly releases

● Code camps before release

● Continuous documentation

http://www.silx.org/doc/silx/

https://github.com/silx-kit/silx
http://www.silx.org/doc/silx/

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 30

silx-kit project and the silx library

Mainly Henri Payno

Mainly Jérôme Kieffer

… and Valentin Valls

Mainly Pierre Knobel … Mainly Thomas Vincent

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 31

Outcome of the silx toolkit after 3 years:

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 32

3D view of the diffraction setup

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 33

3D view of the diffraction setup

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 34

Calibration tools

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 35

Acknowledgments

● Data analysis unit staff:

– Valentin Valls

– Thomas Vincent

– V. Armando Solé

– Claudio Ferrero†

● Other synchrotron/labs

– Soleil: Fred Picca, Diffabs & Cristal
beamlines

– APS: Clemens Prescher

– NSLS-II: scikit-beam project

– ALS: Camera project

● International Grants:

– LinkSCEEM-2 grant

● Dimitris Karkoulis

● Giannis Ashiotis

● Zubair Nawaz

● ESRF Beamlines:

BM01, BM02, ID02, ID11,
ID13, ID15, ID21, ID22, ID23,
BM26, BM29, ID29, ID30, ID31
...

● Trainees:

– Aurore Deschildre

– Frederic Sulzmann

– Guillaume Bonamis

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 36

Questions ?

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 37

Installation procedure on MacOS

● Download all data needed

– From http://www.silx.org/pub/pyFAI/pyFAI_UM_2020.zip

– Unzip the content of this archive

● Install Python3.7

– Double click on the dmg file found in the macos folder

– Drag-and-drop to the Applications folder

● Install pyFAI into a virtual environment

– python3.7 -m venv pyfai

– source pyfai/bin/activate

– pip install -f macos/wheelhouse –-pre -–no-index pyFAI[gui]
● Run the application of your choice:

– pyFAI-calib2

– pyFAI-integrate

– pyFAI-benchmark

http://www.silx.org/pub/pyFAI/pyFAI_UM_2020.zip

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 38

Installation procedure on Windows

● Download all data needed

– From http://www.silx.org/pub/pyFAI/pyFAI_UM_2020.zip

– Unzip the content of this archive

● Install Python3.7

– Double click on the exe file found in the windows folder

– Install winpython to the root of the archive

– Launch the “WinPython Command Prompt.exe”
● Install pyFAI and the missing dependencies

– pip install -f windows\wheelhouse –-pre -–no-index pyFAI[gui]
● Run the application of your choice:

– pyFAI-calib2

– pyFAI-integrate

– pyFAI-benchmark

http://www.silx.org/pub/pyFAI/pyFAI_UM_2020.zip

03/02/2020Tutorial for ESRF users meeting 2020: pyFAIPage 39

Installation procedure on Linux

● Download all data needed

– From http://www.silx.org/pub/pyFAI/pyFAI_UM_2020.zip

– Unzip the content of this archive

● Install Python 3.x (x≥5) and create a virtual environment

– Follow the procedure of your distribution

– python3 -m venv pyfai

– source pyfai/bin/activate
● Install pyFAI and the missing dependencies

– pip install –-pre pyFAI[gui]
● Run the application of your choice:

– pyFAI-calib2

– pyFAI-integrate

– pyFAI-benchmark

http://www.silx.org/pub/pyFAI/pyFAI_UM_2020.zip

	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

