

07/11/2016PyFAIPage 2

Fast azimuthal integration … in Python

While speed is only needed at large facilities …
… proper calculation is needed for any scientific application

07/11/2016PyFAIPage 3

Introduction to PyFAI

07/11/2016PyFAIPage 4

Introduction to Azimuthal integration

● Allows the use of area detectors for

– Small angle scattering

– Powder diffraction, PDF, ...

● Better harvesting of X-ray photons (large solid angle)

● The devil is hidden in the details (of implementation)

● PyFAI is:

– Open source
– Open to contribution
– Open to discussion
– Free
– Fast

Azimuthal integration

But many other tools exists:
- FIT2D
- DataSqueeze
- XRDUA
- Foxtrot
- Maud
- GSAS-II

07/11/2016PyFAIPage 5

Concepts in PyFAI

● Image

2D array of pixels, often read using the FabIO library.

● Stack of images

3D volume composed of a list of images. Read using HDF5

● Azimuthal integrator

Core pyFAI object which can transform an image into:

● powder diagram using integrate1d

● “cake” image, azimuthally regrouped using integrate2d

● Detector

Calculates the pixel position and mask, flat, ...

● Geometry

Position of the detector from the sample & incoming beam

● PONI-file

Small text file with the detector description and the geometry.
Loaded by the azimuthal integrator

http://pyfai.readthedocs.io/en/latest/pyFAI.html#experiment-description

http://pyfai.readthedocs.io/en/latest/pyFAI.html#experiment-description

07/11/2016PyFAIPage 6

PyFAI is a library on which applications are built on

Library

– Re-usable code

– Needs the definition of an API

– Faster to develop

– Easier to test and maintain

Graphical application

– Easier to use

– Looks better

– Only one application

– Code not re-usable

● PyFAI is itself relying on the Scientific Python stack:

– Numpy

– Scipy

– Matplotlib

– H5Py

– Cython

– FabIO

+PyQt, for the graphical part
+ silx (soon)

≠

07/11/2016PyFAIPage 7

Examples of application relying on pyFAI

● NanoPeakCell: Serial crystallography pre-processing

– Nicolas Coquelle, IBS Grenoble

● PySaxs: data analysis for SAXS experimental station

– Olivier Tache, CEA Saclay

● Dpdak: online data analysis for Saxs data

– Gunthard Benecke, Petra III

● Dioptas: offline data analysis for high pressure diffraction

– Clemens Percher, APS → Germany

● Bubble: online data analysis for Saxs/Waxs data

– Vadim Diadkin, Dubble & SNBL CRG beamlines, now ID11

● Project for materials and strain analysis

– Jozef Keckes, Loeben university, Austria

● xPDFsuite

– Prof. Simon Billinge, U. of Columbia

http://pyfai.readthedocs.io/en/latest/ecosystem.html

http://pyfai.readthedocs.io/en/latest/ecosystem.html

07/11/2016PyFAIPage 8

PyFAI mailing list subscribers

grouped by country

ESRF
France
Germany
Google/hotmail
United Kingdom
System
Spain
USA
Italy
Sweden
Netherlands

User community of pyFAI

● PyFAI is used in most European and American synchrotons/FELs

● User support is provided via the mailing list: pyFAI@esrf.fr

– Direct contact with authors is discouraged

https://pythonhosted.org/pyFAI/project.html#getting-help

mailto:pyFAI@esrf.fr
https://pythonhosted.org/pyFAI/project.html#getting-help

07/11/2016PyFAIPage 9

Layers in pyFAI

● Applications level:

– GUI applications: pyFAI-calib, pyFAI-integrate, diff_map

– Scriptable applications:pyFAI-average, pyFAI-saxs, pyFAI-waxs, diff_tomo, …

● Python interface:

– Top level: azimuthal integrator

– Mid level: calibrant, detector, geometry, calibration

– Low level: rebinning/histogramming engines (Cython or OpenCL)

● Question: how to define the right balance ?

It is up to you !

F
l
e
x
i
b
i
l
i
t
y

E
a
s
e

o
f

u
s
e

07/11/2016PyFAIPage 10

Description of a few application in pyFAI:

● Preprocessing

● Mask drawing tool

● Calibration

● Integration

● Diffraction mapping

● …

07/11/2016PyFAIPage 11

Image pre-processing: pyFAI-average

● A tool for filtering a stack of images :

– Used to merge multiple input images (can be a multiframe nexus)

– Merging methods available:

min, max, mean, std, median, sum, quantiles, cutoff

– Correct for dark-current & flat-field

– Normalize for a monitor value (from headers)

– Exports in multiple formats (see FabIO)

● Can be used to convert image format (NeXus → TIF)

http://www.silx.org/doc/pyFAI/man/pyFAI-average.html

http://www.silx.org/doc/pyFAI/man/pyFAI-average.html

07/11/2016PyFAIPage 12

Mask drawing tool: pyFAI-drawmask

● First application relying on silx (still compatible with PyMca)

Contribution from Valentin Valls

07/11/2016PyFAIPage 13

Calibration: pyFAI-calib

● The determination of the geometry is also known as calibration

– The prerequisite is:

● detector geometry and mask,

● calibrant (LaB6, CeO2, AgBh, …)

● wavelength or energy used

– Only the position of the detector and the rotation needs to be refined:

● 3 translations: dist, poni1 and poni2

● 3 rotations: rot1, rot2, rot3

● PyFAI assumes this setup does not change during the experiment

● It is divided into 4 major steps:

– Extraction of groups of peaks

– Identification of peaks and groups of peaks belonging to same ring

– Least-squares refinement of the geometry parameters on peak position

– Validation by an human being of the geometry

http://pyfai.readthedocs.io/en/latest/usage/cookbook/calibrate.html

http://pyfai.readthedocs.io/en/latest/usage/cookbook/calibrate.html

07/11/2016PyFAIPage 14

Detectors

● Detector are 2D array of pixel, they contain:

– pixel size

– mask

– A way to calculate where a pixel is located in space (3D)

● PyFAI provides 120 (56 unique) detectors pre-defined

– Dectris, ImXpad, Rayonix, Dexela, Perkin-Elmer, …

● Detectors can easily be specialized:

– With their specific masks

– With their specific pixel positions

– Then saved to a NeXus file

● Detector can be contiguous or not ...

● Detectors can be flat or not ...

07/11/2016PyFAIPage 15

Example of non-contiguous detectors:

● Xpad are module based pixel-detectors

– The S540 is 8 strips of 7 modules each

– Gaps between modules within a strip are small (few pixels)

– Gaps between strips are large (hundreds of pixels)

● Can be challenging to calibrate !

– Calibrant: LaB6 at 18.57keV

07/11/2016PyFAIPage 16

Example of non-planar detector: cylindrical

● Every pixel has its own geometry

● Hemi-cylindrical detector based on a bent imaging plate:

– Calibration of such detector is naturally possible with pyFAI

Courtesy of U. Aarhus

07/11/2016PyFAIPage 17

Calibrants: provide aperture of Debye-Scherrer cones

● PyFAI ships 15 reference samples (decreasing 2q of first ring) + variants:

– Au: Gold

– ZnO: Blende

– CeO2: Ceria

– Si: Silicon

– NaCl: Salt

– alpha_Al2O3: Corundum

– Cristobaltite and Quartz (SiO2)

– Cr2O3 and CrOx : Chromium oxide (the later being the undefined oxide used on MX beamlines)

– LaB6: Lantanide hexaboride

– PBBA: Para Bromo Benzoic Acid

– C14H30O: tetradecanol

– AgBh: Silver Behenate

● But you can provide your d-spacing file if you prefer:

– Ascii text files with d-spacing written in Angstrom (like FIT2D)

– Use the American Minaralogist database:

● http://rruff.geo.arizona.edu/AMS/amcsd.php

http://rruff.geo.arizona.edu/AMS/amcsd.php

07/11/2016PyFAIPage 18

Azimuthal integration tool: pyFAI-integrate

From PONI file

Define the output space

Can now be used in command line mode without Qt

07/11/2016PyFAIPage 19

Diffraction imaging offline tool: diff-map

Produces NeXus files

Created as part of the IR-drx2015
project

07/11/2016PyFAIPage 20

Diffraction imaging HDF5 Visualization

● Visualize and analyze 3D stack using pymcaroitool

Subsequent analysis are based on PCA and other multivariate analysis …

07/11/2016PyFAIPage 21

Why a library rather than an application ?

● An application for diffraction purposes already exists:

– And it has been around for 20 years: FIT2D

● But this application was not flexible enough !

– To be integrated into a beamline acquisition scheme

– To test new ideas (easily)

→ This is why pyFAI was started in 2011

● A library is easier to:

– Test: thanks to a testing framework

– Develop: no need to master GUI programming

– Maintain over the years (>10y life-cycle)

● A library does not prevent GUIs, ...
but ensures a clear separation of logic and processing

● Many tools can be easily developed and put in a toolkit

– Following the UNIX philosophy: many tools, one for each task.

07/11/2016PyFAIPage 22

Description of the Python API

● Top level API:

– AzimuthalIntegrator

● Method for azimuthal averaging: integrate1d

● Method for azimuthal regrouping: integrate2d

– Distortion

● Correct and uncorrect methods

● Mid level API:

– Geometry: Parent class of AzimuthalIntegrator

– Detector: Calculate the pixel position & masks

– Calibrant: provide 2q as function of the wavelength

● Low level API: different rebinning engines

– OCL_LUT_Integrator, OCL_CSR_Integrator, ...

– SplitBBoxLUT, splitBBoxCSR, ...

07/11/2016PyFAIPage 24

What happens during an integration

1) Get the pixel coordinates from the detector, in meter.

There are 3 coordinates par pixel corner, and usually 4 corners per pixel.

1Mpix image → 48 Mbyte !

2) Offset the detector's origin to the PONI

3) Calculate the radial (2q) and azimuthal (c) positions of each corner

4) Assign each pixel to one or multiple bins.

If a look-up table is used, just store the fraction of the pixel.

Then for each bin sum the content of all contributing pixels.

5) Return bin position and associated intensities

07/11/2016PyFAIPage 25

Azimuthal Integrator

Performs the azimuthal regrouping in 1&2D. Inherits Geometry, composes Detector, Integrators

● Creation: import a PONI-file:

ai=pyFAI.load(ponifile)
● Important methods (note many deprecated methods):

– Integrate1d; integrate2d; separate

● Common arguments:

● data (ndarray) – 2D array from the Detector/CCD camera
● npt / (int) – number of points in the output pattern # npt_rad, npt_azim
● filename (str) – output filename in 2/3 column ascii format
● correctSolidAngle (bool) – correct for solid angle of each pixel if True
● variance (ndarray) – array containing the variance of the data. If not available, no error propagation is done
● error_model (str) – When the variance is unknown, an error model can be given: “poisson” (variance = I), “azimuthal” (variance =

(I-<I>)^2)
● radial_range ((float, float), optional) – The lower and upper range of the radial unit. If not provided, range is simply (data.min(),

data.max()). Values outside the range are ignored.
● azimuth_range ((float, float), optional) – The lower and upper range of the azimuthal angle in degree. If not provided, range is

simply (data.min(), data.max()). Values outside the range are ignored.
● mask (ndarray) – array (same size as image) with 1 for masked pixels, and 0 for valid pixels
● dummy (float) – value for dead/masked pixels
● delta_dummy (float) – precision for dummy value
● polarization_factor (float) – polarization factor between -1 (vertical) and +1 (horizontal). 0 for circular polarization or random, None

for no correction
● dark (ndarray) – dark noise image
● flat (ndarray) – flat field image
● method (str) – can be “numpy”, “cython”, “BBox” or “splitpixel”, “lut”, “csr”, “nosplit_csr”, “full_csr”, “lut_ocl” and “csr_ocl” if you

want to go on GPU. To Specify the device: “csr_ocl_1,2”
● unit (pyFAI.units.Enum) – Output units, can be “q_nm^-1”, “q_A^-1”, “2th_deg”, “2th_rad”, “r_mm” for now
● safe (bool) – Do some extra checks to ensure LUT/CSR is still valid. False is faster.
● normalization_factor (float) – Value of a normalization monitor

● Returns:

– Integrate result: looks like a tuple with intensity and bin-center coordinates

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.azimuthalIntegrator.AzimuthalIntegrator

07/11/2016PyFAIPage 26

Geometry

In charge of calculating the 2th/q/r/chi position for a point in space,
handles array caching and locking. Contains the detector (composition)

● Usage:

– Not directly: Usually via ai objects (inherited by AzimuthalIntegrator)

● Important methods:

– calcfrom1d(tth,I): back-project powder pattern in a 2D image

– get/set|PyFAI/SPD/Fit2D: exchange geometries with other programs

– load(ponifile): instanciate geometry/aifrom a poni-file

– reset(): empty all caches

● Warning:

– may be re-implemented one day with pluggable geometry-engines to
have them interchangeable

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.geometry.Geometry

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.azimuthalIntegrator.AzimuthalIntegrator

07/11/2016PyFAIPage 27

Detector

Detector is a base-class defining any kind of 2D-detectors. There are
about 56 specialized detectors: Pilatus, Xpad, Rayonix …

● Usage: there is a factory to instantiate a detector from its name:

det = pyFAI.detector_factory("pilatus1M")

● Important methods:

– get_mask(): calculate and cache the mask for this detector

– save(nexusfile): save the detector configuration into HDF5

– get_pixel_corners(): in cartesian position -> 4D array (Ny,Nx,Nc,3)

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#module-pyFAI.detectors

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.geometry.Geometry

07/11/2016PyFAIPage 28

Geometry Refinement

Given a set of points (x,y) and associated ring number, refines the
parameter of the PONI-file. Inherits from AzimuthalIntegrator. Contains a
calibrant

● Usage:

– Used by calibration

● Important methods:

– Simplex, Refine1, Refine2: wraps scipy.optimize.fmin function

● Warning:

– should not inherit from AzimuthalIntegrator but compose Geometry

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.geometryRefinement.GeometryRefinement

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#module-pyFAI.detectors

07/11/2016PyFAIPage 29

Calibrant

A calibrant is a reference compound where the d-spacings (interplanar
distances) are known. The Calibrant class loads them from a file and
contains the wavelength.

● Usage:

– LaB6 = pyFAI.calibrant.ALL_CALIBRANT(“LaB6”)

– Pt = pyFAI.calibrant.Calibrant(dspacing=[2.265,1.962,1.387,1.183,1.133])

● Important method

– set_wavelength(1e-10): write once !!!!

– get_2th(): get the position in 2theta of the reflection

– fake_calibration_image(ai): simulate a calibration image given the
geometry and the detector in ai

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.calibrant.Calibran
t

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.geometryRefinement.GeometryRefinement

07/11/2016PyFAIPage 30

Calibration

Command line interface for calibration

● Usage:

– Used from pyFAI-calib script.

● Alternative:

– There is a procedural interface to Calibration:

ai = pyFAI.calibration.calib(img, calibrant, detector)

– Can be used, for example, in ipython or NexPy

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#calibration-module

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.calibrant.Calibrant
http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.calibrant.Calibrant

07/11/2016PyFAIPage 31

Distortion

Use the rebinning engines to perform distortion correction of detectors

● Usage:

dis = pyFAI.distortion.Distortion(detector)

● Important method:

– correct(img): re-distribute intensity on a regular grid.

– uncorrect(img): reverse a correction, for masks in Fit2D

● Nota:

Because of the great regularity of this rebinning, LUT is faster than CSR

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.distortion.Distortion

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#calibration-module

07/11/2016PyFAIPage 32

Distortion correction, just an example

Fast (ms)

Slow (s)

WOS detector, courtesy of D2AM CRG beamline

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.distortion.Distortion

07/11/2016PyFAIPage 33

Worker

Set of classes to perform azimuthal integration, distortion correction or
normalization, repetitively on a set of files.

● Usage:

w = pyFAI.worker.Worker(ai)

w = pyFAI.worker.DistortionWorker(detector)

w = pyFAI.worker.PixelwiseWorker(dark, flat, mask)

● Important method:

– w.process(img)

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.worker

07/11/2016PyFAIPage 34

Multi-geometry integrator

● Assemble multiple images taken at various position into a single pattern

Documented on: http://pyfai.readthedocs.org/en/latest/usage/tutorial/multi-geometry.html

Courtesy of D2AM CRG

Takes care of solid-angle
normalization between detector

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.worker

07/11/2016PyFAIPage 35

Multi-geometry vs larger detector

↑ 3 images taken with a Pilatus_1M on a rotating arm (ID28) offset by 0°/17°/45°

↑1 image taken with a curved imaging plate
(detector built at Aarhus/Denmark)

http://pyfai.readthedocs.org/en/latest/usage/tutorial/multi-geometry.html

07/11/2016PyFAIPage 36

Past & Future:

What are the projects ?

07/11/2016PyFAIPage 37

PyFAI: Past ...

● Looking back:

– 2011: Basic idea: geometry, refinement, histograms

– 2012: Dimitris Karkoulis: histogramming in OpenCL,
Pixel splitting

– 2013: Zubair Nawaz: spline calculation in OpenCL,
Look-up table

– 2014: Aurore Deschildre: blob pixel detection
Giannis Ashiotis: CSR sparse matrix multiplication

– 2015: Frederic Sulzman pixel-detector description

– 2016 - 2019: Valentin Valls: graphical interface for pyFAI

07/11/2016PyFAIPage 38

PyFAI: Present & Future ...

● Recently done:

– OpenCL port of “separate”, request from by ID13

– Detector distortion, correction, NeXus representation (ID15, ID02, BM02)

– Diffraction imaging (collaboration with Soleil & CRGs)

– Multi-detector integrators

– log(q) or other user defined output spaces (ID02)

● On the radar

– CLI interface

● Single application → ease distribution for windows & MacOSX

● watershed segmentation (not yet production ready)

● image reconstruction of gaps

– Graphical interface for calibration

– Clean-up/merge LUT and CSR cython code base

– Variance propagation with pixel splitting

● You have ideas ? We are open to collaboration !

Thank you for your attention

07/11/2016PyFAIPage 101

PyFAI is fast

	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 101

