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Fast azimuthal integration … in Python

  

While speed is only needed at large facilities …
… proper calculation is needed for any scientific application
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Introduction to PyFAI
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Introduction to Azimuthal integration

● Allows the use of area detectors for

– Small angle scattering

– Powder diffraction, PDF, ...

● Better harvesting of X-ray photons (large solid angle)

● The devil is hidden in the details (of implementation)

● PyFAI is: 

– Open source
– Open to contribution
– Open to discussion
– Free
– Fast

Azimuthal integration

But many other tools exists:
- FIT2D
- DataSqueeze
- XRDUA
- Foxtrot
- Maud
- GSAS-II
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Concepts in PyFAI

● Image

2D array of pixels, often read using the FabIO library.

● Stack of images

3D volume composed of a list of images. Read using HDF5

● Azimuthal integrator

Core pyFAI object which can transform an image into:

● powder diagram using integrate1d

● “cake” image, azimuthally regrouped  using integrate2d

● Detector

Calculates the pixel position and mask, flat, ...

● Geometry

Position of the detector from the sample & incoming beam

● PONI-file

Small text file with the detector description and the geometry.
Loaded by the azimuthal integrator

http://pyfai.readthedocs.io/en/latest/pyFAI.html#experiment-description

http://pyfai.readthedocs.io/en/latest/pyFAI.html#experiment-description
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PyFAI is a library on which applications are built on

Library

– Re-usable code

– Needs the definition of an API

– Faster to develop

– Easier to test and maintain

Graphical application

– Easier to use

– Looks better

– Only one application

– Code not re-usable

● PyFAI is itself relying on the Scientific Python stack:

– Numpy

– Scipy

– Matplotlib

– H5Py

– Cython

– FabIO

+PyQt, for the graphical part
+ silx (soon)

≠
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Examples of application relying on pyFAI

● NanoPeakCell: Serial crystallography pre-processing

– Nicolas Coquelle, IBS Grenoble

● PySaxs: data analysis for SAXS experimental station

– Olivier Tache, CEA Saclay

● Dpdak: online data analysis for Saxs data

– Gunthard Benecke, Petra III

● Dioptas: offline data analysis for high pressure diffraction

– Clemens Percher, APS → Germany

● Bubble: online data analysis for Saxs/Waxs data

– Vadim Diadkin, Dubble & SNBL CRG beamlines, now ID11

● Project for materials and strain analysis

– Jozef Keckes, Loeben university, Austria

● xPDFsuite

– Prof. Simon Billinge, U. of Columbia

http://pyfai.readthedocs.io/en/latest/ecosystem.html

http://pyfai.readthedocs.io/en/latest/ecosystem.html


07/11/2016PyFAIPage 8

PyFAI mailing list subscribers

grouped by country

ESRF
France
Germany
Google/hotmail
United Kingdom
System
Spain
USA
Italy
Sweden
Netherlands

User community of pyFAI

● PyFAI is used in most European and American synchrotons/FELs

● User support is provided via the mailing list: pyFAI@esrf.fr

– Direct contact with authors is discouraged

https://pythonhosted.org/pyFAI/project.html#getting-help

mailto:pyFAI@esrf.fr
https://pythonhosted.org/pyFAI/project.html#getting-help
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Layers in pyFAI

● Applications level:

– GUI applications: pyFAI-calib, pyFAI-integrate, diff_map

– Scriptable applications:pyFAI-average, pyFAI-saxs, pyFAI-waxs, diff_tomo, …

● Python interface:

– Top level: azimuthal integrator

– Mid level: calibrant, detector, geometry, calibration

– Low level: rebinning/histogramming engines (Cython or OpenCL)

● Question: how to define the right balance ?

It is up to you !
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Description of a few application in pyFAI:

● Preprocessing

● Mask drawing tool

● Calibration

● Integration

● Diffraction mapping

● … 
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Image pre-processing: pyFAI-average

● A tool for filtering a stack of images :

– Used to merge multiple input images (can be a multiframe nexus)

– Merging methods available:

min, max, mean, std, median, sum, quantiles, cutoff

– Correct for dark-current & flat-field

– Normalize for a monitor value (from headers)

– Exports in multiple formats (see FabIO)

● Can be used to convert image format (NeXus → TIF)

http://www.silx.org/doc/pyFAI/man/pyFAI-average.html

http://www.silx.org/doc/pyFAI/man/pyFAI-average.html
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Mask drawing tool: pyFAI-drawmask

● First application relying on silx (still compatible with PyMca)

Contribution from Valentin Valls
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Calibration: pyFAI-calib

● The determination of the geometry is also known as calibration

– The prerequisite is:

● detector geometry and mask,

● calibrant (LaB6, CeO2, AgBh, …) 

● wavelength or energy used

– Only the position of the detector and the rotation needs to be refined:

● 3 translations: dist, poni1 and poni2

● 3 rotations: rot1, rot2, rot3

● PyFAI assumes this setup does not change during the experiment

● It is divided into 4 major steps:

– Extraction of groups of peaks

– Identification of peaks and groups of peaks belonging to same ring

– Least-squares refinement of the geometry parameters on peak position

– Validation by an human being of the geometry

http://pyfai.readthedocs.io/en/latest/usage/cookbook/calibrate.html

http://pyfai.readthedocs.io/en/latest/usage/cookbook/calibrate.html
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Detectors

● Detector are 2D array of pixel, they contain:

– pixel size

– mask

– A way to calculate where a pixel is located in space (3D)

● PyFAI provides 120 (56 unique) detectors pre-defined

– Dectris, ImXpad, Rayonix, Dexela, Perkin-Elmer, …

● Detectors can easily be specialized:

– With their specific masks

– With their specific pixel positions

– Then saved to a NeXus file

● Detector can be contiguous or not ...

● Detectors can be flat or not ...
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Example of non-contiguous detectors:

● Xpad are module based pixel-detectors

– The S540 is 8 strips of 7 modules each

– Gaps between modules within a strip are small (few pixels)

– Gaps between strips are large (hundreds of pixels)

● Can be challenging to calibrate !

– Calibrant: LaB6 at 18.57keV
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Example of non-planar detector: cylindrical 

● Every pixel has its own geometry

● Hemi-cylindrical detector based on a bent imaging plate:

– Calibration of such detector is naturally possible with pyFAI

Courtesy of U. Aarhus
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Calibrants: provide aperture of Debye-Scherrer cones

● PyFAI ships 15 reference samples (decreasing 2q of first ring) + variants:

– Au: Gold

– ZnO: Blende

– CeO2: Ceria

– Si: Silicon

– NaCl: Salt

– alpha_Al2O3: Corundum

– Cristobaltite and Quartz (SiO2)

– Cr2O3 and CrOx : Chromium oxide (the later being the undefined oxide used on MX beamlines)

– LaB6: Lantanide hexaboride

– PBBA: Para Bromo Benzoic Acid

– C14H30O: tetradecanol

– AgBh: Silver Behenate

● But you can provide your d-spacing file if you prefer:

– Ascii text files with d-spacing written in Angstrom (like FIT2D)

– Use the American Minaralogist database:

● http://rruff.geo.arizona.edu/AMS/amcsd.php

http://rruff.geo.arizona.edu/AMS/amcsd.php
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Azimuthal integration tool: pyFAI-integrate

From PONI file

Define the output space

Can now be used in command line mode without Qt
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Diffraction imaging offline tool: diff-map

Produces NeXus files

Created as part of the IR-drx2015
project
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Diffraction imaging HDF5 Visualization

● Visualize and analyze 3D stack using pymcaroitool

Subsequent analysis are based on PCA and other multivariate analysis  … 
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Why a library rather than an application ?

● An application for diffraction purposes already exists:

– And it has been around for 20 years: FIT2D

● But this application was not flexible enough !

– To be integrated into a beamline acquisition scheme

– To test new ideas (easily)

→ This is why pyFAI was started in 2011

● A library is easier to:

– Test: thanks to a testing framework

– Develop: no need to master GUI programming

– Maintain over the years (>10y life-cycle)

● A library does not prevent GUIs, ...
but ensures a clear separation of logic and processing

● Many tools can be easily developed and put in a toolkit

– Following the UNIX philosophy: many tools, one for each task.
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Description of the Python API

● Top level API:

– AzimuthalIntegrator

● Method for azimuthal averaging: integrate1d

● Method for azimuthal regrouping: integrate2d

– Distortion

● Correct and uncorrect methods

● Mid level API: 

– Geometry: Parent class of AzimuthalIntegrator

– Detector: Calculate the pixel position & masks

– Calibrant: provide 2q as function of the wavelength

● Low level API: different rebinning engines

– OCL_LUT_Integrator, OCL_CSR_Integrator, ...

– SplitBBoxLUT, splitBBoxCSR, ...
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What happens during an integration

1) Get the pixel coordinates from the detector, in meter.

There are 3 coordinates par pixel corner, and usually 4 corners per pixel.

1Mpix image → 48 Mbyte !

2) Offset the detector's origin to the PONI

3) Calculate the radial (2q) and azimuthal (c) positions of each corner

4) Assign each pixel to one or multiple bins.

If a look-up table is used, just store the fraction of the pixel.

Then for each bin sum the content of all contributing pixels.

5) Return bin position and associated intensities
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Azimuthal Integrator

Performs the azimuthal regrouping in 1&2D. Inherits Geometry, composes Detector, Integrators

● Creation: import a PONI-file:

ai=pyFAI.load(ponifile)
● Important methods (note many deprecated methods):

– Integrate1d; integrate2d; separate

● Common arguments:

●     data (ndarray) – 2D array from the Detector/CCD camera
●     npt /  (int) – number of points in the output pattern # npt_rad, npt_azim
●     filename (str) – output filename in 2/3 column ascii format
●     correctSolidAngle (bool) – correct for solid angle of each pixel if True
●     variance (ndarray) – array containing the variance of the data. If not available, no error propagation is done
●     error_model (str) – When the variance is unknown, an error model can be given: “poisson” (variance = I), “azimuthal” (variance =

(I-<I>)^2)
●     radial_range ((float, float), optional) – The lower and upper range of the radial unit. If not provided, range is simply (data.min(),

data.max()). Values outside the range are ignored.
●     azimuth_range ((float, float), optional) – The lower and upper range of the azimuthal angle in degree. If not provided, range is

simply (data.min(), data.max()). Values outside the range are ignored.
●     mask (ndarray) – array (same size as image) with 1 for masked pixels, and 0 for valid pixels
●     dummy (float) – value for dead/masked pixels
●     delta_dummy (float) – precision for dummy value
●     polarization_factor (float) – polarization factor between -1 (vertical) and +1 (horizontal). 0 for circular polarization or random, None

for no correction
●     dark (ndarray) – dark noise image
●     flat (ndarray) – flat field image
●     method (str) – can be “numpy”, “cython”, “BBox” or “splitpixel”, “lut”, “csr”, “nosplit_csr”, “full_csr”, “lut_ocl” and “csr_ocl” if you

want to go on GPU. To Specify the device: “csr_ocl_1,2”
●     unit (pyFAI.units.Enum) – Output units, can be “q_nm^-1”, “q_A^-1”, “2th_deg”, “2th_rad”, “r_mm” for now
●     safe (bool) – Do some extra checks to ensure LUT/CSR is still valid. False is faster.
●     normalization_factor (float) – Value of a normalization monitor

● Returns:

– Integrate result: looks like a tuple with intensity and bin-center coordinates

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.azimuthalIntegrator.AzimuthalIntegrator



07/11/2016PyFAIPage 26

Geometry

In charge of calculating the 2th/q/r/chi position for a point in space,
handles array caching and locking. Contains the detector (composition)

● Usage: 

– Not directly: Usually via ai objects (inherited by AzimuthalIntegrator)

● Important methods:

– calcfrom1d(tth,I): back-project powder pattern in a 2D image

– get/set|PyFAI/SPD/Fit2D: exchange geometries with other programs

– load(ponifile): instanciate geometry/aifrom a poni-file

– reset(): empty all caches

● Warning: 

– may be re-implemented one day with pluggable geometry-engines to
have them interchangeable

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.geometry.Geometry

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.azimuthalIntegrator.AzimuthalIntegrator


07/11/2016PyFAIPage 27

Detector

Detector is a base-class defining any kind of 2D-detectors. There are
about 56 specialized detectors: Pilatus, Xpad, Rayonix …

● Usage: there is a factory to instantiate a detector from its name:

det = pyFAI.detector_factory("pilatus1M")

● Important methods:

– get_mask(): calculate and cache the mask for this detector

– save(nexusfile): save the detector configuration into HDF5

– get_pixel_corners(): in cartesian position -> 4D array (Ny,Nx,Nc,3)

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#module-pyFAI.detectors

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.geometry.Geometry
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Geometry Refinement

Given a set of points (x,y) and associated ring number, refines the
parameter of the PONI-file. Inherits from AzimuthalIntegrator. Contains a
calibrant

● Usage:

– Used by calibration

● Important methods:

– Simplex, Refine1, Refine2: wraps scipy.optimize.fmin function

● Warning: 

– should not inherit from AzimuthalIntegrator but compose Geometry

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.geometryRefinement.GeometryRefinement

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#module-pyFAI.detectors
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Calibrant

A calibrant is a reference compound where the d-spacings (interplanar
distances) are known. The Calibrant class loads them from a file and
contains the wavelength.

● Usage:

– LaB6 = pyFAI.calibrant.ALL_CALIBRANT(“LaB6”)

– Pt = pyFAI.calibrant.Calibrant(dspacing=[2.265,1.962,1.387,1.183,1.133])

● Important method

– set_wavelength(1e-10):  write once !!!!

– get_2th(): get the position in 2theta of the reflection

– fake_calibration_image(ai): simulate a calibration image given the
geometry and the detector in ai

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.calibrant.Calibran
t

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.geometryRefinement.GeometryRefinement
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Calibration

Command line interface for calibration

● Usage:

– Used from pyFAI-calib script.

● Alternative:

– There is a procedural interface to Calibration:

ai = pyFAI.calibration.calib(img, calibrant, detector)

– Can be used, for example, in ipython or NexPy

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#calibration-module

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.calibrant.Calibrant
http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.calibrant.Calibrant
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Distortion

Use the rebinning engines to perform distortion correction of detectors

● Usage:

dis = pyFAI.distortion.Distortion(detector)

● Important method:

– correct(img): re-distribute intensity on a regular grid.

– uncorrect(img): reverse a correction, for masks in Fit2D

● Nota:

Because of the great regularity of this rebinning, LUT is faster than CSR

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.distortion.Distortion

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#calibration-module
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Distortion correction, just an example

Fast (ms)

Slow (s)

WOS detector, courtesy of D2AM CRG beamline

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.distortion.Distortion
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Worker

Set of classes to perform azimuthal integration, distortion correction or
normalization, repetitively on a set of files.

● Usage:

w = pyFAI.worker.Worker(ai)

w = pyFAI.worker.DistortionWorker(detector)

w = pyFAI.worker.PixelwiseWorker(dark, flat, mask)

● Important method:

– w.process(img)

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.worker
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Multi-geometry integrator

● Assemble multiple images taken at various position into a single pattern

Documented on: http://pyfai.readthedocs.org/en/latest/usage/tutorial/multi-geometry.html

Courtesy of D2AM CRG

Takes care of solid-angle 
normalization between detector

http://pyfai.readthedocs.io/en/latest/api/pyFAI.html#pyFAI.worker
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Multi-geometry vs larger detector

↑ 3 images taken with a Pilatus_1M on a rotating arm (ID28) offset by 0°/17°/45°

↑1 image taken with a curved imaging plate
(detector built at Aarhus/Denmark)

http://pyfai.readthedocs.org/en/latest/usage/tutorial/multi-geometry.html
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Past & Future:

What are the projects ?
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PyFAI: Past ...

● Looking back:

– 2011: Basic idea: geometry, refinement, histograms

– 2012: Dimitris Karkoulis: histogramming in OpenCL,
Pixel splitting

– 2013: Zubair Nawaz: spline calculation in OpenCL,
Look-up table 

– 2014: Aurore Deschildre: blob pixel detection
Giannis Ashiotis: CSR sparse matrix multiplication

– 2015: Frederic Sulzman pixel-detector description

– 2016 - 2019: Valentin Valls: graphical interface for pyFAI
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PyFAI: Present & Future ...

● Recently done:

– OpenCL port of “separate”, request from by ID13

– Detector distortion, correction, NeXus representation (ID15, ID02, BM02)

– Diffraction imaging (collaboration with Soleil & CRGs)

– Multi-detector integrators 

– log(q) or other user defined output spaces (ID02)

● On the radar

– CLI interface 

● Single application → ease distribution for windows & MacOSX

● watershed segmentation (not yet production ready)

● image reconstruction of gaps

– Graphical interface for calibration

– Clean-up/merge LUT and CSR cython code base

– Variance propagation with pixel splitting

● You have ideas ? We are open to collaboration !



Thank you for your attention



07/11/2016PyFAIPage 101

PyFAI is fast
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