Converting various data files to HDF5¶
This document explains how to convert SPEC files, EDF files and various other data formats into HDF5 files.
Understanding the way these data formats are exposed by the silx.io.open()
function is a prerequisite for this tutorial. You can learn more about this subject by
reading “Getting started with silx.io”.
Using the convert module¶
The silx module silx.io.convert
can be used to convert various data files into a
HDF5 file with the same structure as the one exposed by the spech5
or fabioh5
modules.
from silx.io.convert import convert
convert("myspecfile.dat", "myfile.h5")
You can then read the file with any HDF5 reader.
The function silx.io.convert.convert()
is a simplified version of the
more flexible function silx.io.convert.write_to_h5()
.
The latter allows you writing scans into a specific HDF5 group in the output directory. You can also decide whether you want to overwrite an existing file or append data to it. You can specify whether existing data with the same name as input data should be overwritten or ignored.
This allows you to repeatedly transfer the new content of a SPEC file to an existing HDF5 file between two scans.
The following script is an example of a command line interface to write_to_h5()
.
import argparse
from silx.io.convert import write_to_h5
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('input_path',
help='Path to input data file')
parser.add_argument('h5_path',
help='Path to output HDF5 file')
parser.add_argument('-t', '--target-path', default="/",
help='Name of the group in which to save the scans ' +
'in the output file')
mode_group = parser.add_mutually_exclusive_group()
mode_group.add_argument('-o', '--overwrite', action="store_true",
help='Overwrite output file if it exists, ' +
'else create new file.')
mode_group.add_argument('-a', '--append', action="store_true",
help='Append data to existing file if it exists, ' +
'else create new file.')
parser.add_argument('--overwrite-data', action="store_true",
help='In append mode, overwrite existing groups and ' +
'datasets in the output file, if they exist with ' +
'the same name as input data. By default, existing' +
' data is not touched, corresponding input data is' +
' ignored.')
args = parser.parse_args()
if args.overwrite_data and not args.append:
print("Option --overwrite-data ignored " +
"(only relevant combined with option -a)")
if args.overwrite:
mode = "w"
elif args.append:
mode = "a"
else:
# by default, use "write" mode and fail if file already exists
mode = "w-"
write_to_h5(args.input_path, args.h5_path,
h5path=args.target_path,
mode=mode,
overwrite_data=args.overwrite_data)
Notice that the functionality and muche more implemented in this script is already implemented in the silx convert application.
Using the convert application¶
New in version 0.6.
silx also provides a silx convert
command line application, by means of which you can
perform standard conversions without having to write your own program.
Type silx convert --help
in a terminal to see all available options.
Note
The complete documentation for the silx convert command is available here: silx convert.
Converting single files¶
The simplest command to convert a single SPEC file to an HDF5 file would be:
silx convert myspecfile.dat
As no output name is supplied, the output file name will be a timestamp with a .h5 suffix (e.g. 20180110-114930.h5).
In the following example it is shown how to append the content of a SPEC file to an existing HDF5 file:
silx convert myspecfile.dat -m a -o myhdf5file.h5
The -m a
argument stands for append mode. The -o myhdf5file.h5
argument is used to specify the output file name.
You could write the file into a specific group of the HDF5 file by writing
the complete URL in the format file_path::group_path
. For instance:
silx convert myspecfile.dat -m a -o archive.h5::/2017-09-20/SPEC
Merging a stack of images¶
silx convert can merge a stack of image files. It supports series of single frame files, and is based on fabio.file_series. All frames must have the same shape.
The following command merges all files matching a pattern:
silx convert --file-pattern ch09__mca_0005_0000_%d.edf -o ch09__mca_0005_0000_multiframe.h5
The data in the output file is presented as a 3D array.
It is possible to provide multiple indices in the file name pattern and specify a range for each index:
silx convert --file-pattern ch09__mca_0005_%04d_%04d.edf --begin 0,1 --end 0,54