{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "wooden-footage",
   "metadata": {},
   "source": [
    "# Implementation of PeakFinder8 on GPU\n",
    "\n",
    "The *peakfinder8* is the core algorithm for assessing the quality of a single frame in serial crystallography and was initially implemented in C++ within the [cheetah](https://www.desy.de/~barty/cheetah/Cheetah/SFX_hitfinding.html) [1]\n",
    "\n",
    "This algorithm is called *peakfinder8* because it consits of 8 subsequent steps perfromed on evry single frame:\n",
    "\n",
    "1. perfrom the azimuthal integration with uncertainety propagation\n",
    "2. discard pixels which differ by more than N-sigma from the mean and cycle to 1 about 3 to 5 times\n",
    "3. pick all pixels with I > mean + min(N*sigma, noise)\n",
    "4. such pixel is a peak if it is the maximum of the 3x3 or 5x5 patch and there are *connected* pixels in the patch with their intensity above the previous threshold.\n",
    "5. subtract background and sum the signal over the patch\n",
    "6. return the index of the peak, the integrated signal and the center of mass of the peak\n",
    "7. exclude neighboring peaks (un-implemented)\n",
    "8. Validate the frame if there are enough peaks found.\n",
    "\n",
    "There is a attempt to implement *peakfinder8* on GPU within the pyFAI.\n",
    "The steps 1+2 correspond to the sigma-clipping algorithm and enforce an azimuthal, normal distribution for the background.\n",
    "\n",
    "This tutorial demontrates how peak-finding can be called from Jupyter notebooks and what are the performances expected. Finally, the performances will be compared with the reference implementation.\n",
    "\n",
    "\n",
    "[1] A. Barty, R. A. Kirian, F. R. N. C. Maia, M. Hantke, C. H. Yoon, T. A. White, and H. N. Chapman, \"Cheetah: software for high-throughput reduction and analysis of serial femtosecond x-ray diffraction data\", J Appl Crystallogr, vol. 47, pp. 1118-1131 (2014)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "hollywood-cache",
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib nbagg"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "aging-inspiration",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import sys\n",
    "import shutil\n",
    "import posixpath\n",
    "import numpy\n",
    "import glob\n",
    "from matplotlib.pylab import subplots\n",
    "import fabio\n",
    "import pyFAI, pyFAI.azimuthalIntegrator\n",
    "from pyFAI.gui import jupyter\n",
    "from pyFAI import units\n",
    "import pyopencl\n",
    "from pyFAI.opencl.peak_finder import OCL_PeakFinder\n",
    "from pyFAI.test.utilstest import UtilsTest\n",
    "import time\n",
    "start_time = time.perf_counter()\n",
    "os.environ[\"PYOPENCL_COMPILER_OUTPUT\"] = \"1\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "postal-blond",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of masked pixels: 527055\n"
     ]
    }
   ],
   "source": [
    "fimg = fabio.open(UtilsTest.getimage(\"Pilatus6M.cbf\"))\n",
    "mask = numpy.logical_or(fimg.data>65000, fimg.data<0)\n",
    "print(f\"Number of masked pixels: {mask.sum()}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "facial-constitutional",
   "metadata": {},
   "outputs": [],
   "source": [
    "det = pyFAI.detector_factory(\"Pilatus6M\")\n",
    "det.mask = mask"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "informal-secondary",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = 'image/png';\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.which === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.which;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which !== 17) {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    if (event.altKey && event.which !== 18) {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    if (event.shiftKey && event.which !== 16) {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data']);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"1000\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "dimg = fimg.data.copy()\n",
    "dimg[mask] = 0\n",
    "\n",
    "fig,ax = subplots(1, 2, figsize=(10,5))\n",
    "jupyter.display(dimg, ax=ax[0])\n",
    "jupyter.display(dimg, ax=ax[1])\n",
    "ax[1].set_xlim(1500, 1800)\n",
    "ax[1].set_ylim(850, 1020)\n",
    "pass"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "disturbed-civilian",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Detector Pilatus 6M\t PixelSize= 1.720e-04, 1.720e-04 m\n",
      "SampleDetDist= 3.000000e-01m\tPONI= 2.254060e-01, 2.285880e-01m\trot1=0.000000  rot2= 0.000000  rot3= 0.000000 rad\n",
      "DirectBeamDist= 300.000mm\tCenter: x=1329.000, y=1310.500 pix\tTilt=0.000 deg  tiltPlanRotation= 0.000 deg\n"
     ]
    }
   ],
   "source": [
    "ponifile = UtilsTest.getimage(\"Pilatus6M.poni\")\n",
    "ai = pyFAI.load(ponifile)\n",
    "ai.detector = det\n",
    "print(ai)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "technological-proportion",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING:pyFAI.ext.splitBBoxCSR:Pixel splitting desactivated !\n"
     ]
    },
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = 'image/png';\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.which === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.which;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which !== 17) {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    if (event.altKey && event.which !== 18) {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    if (event.shiftKey && event.which !== 16) {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data']);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"640\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "kwargs = {\"data\": fimg.data,\n",
    "          \"npt\":1000, \n",
    "          \"method\": (\"no\", \"csr\", \"opencl\"), \n",
    "          \"polarization_factor\": 0.99, \n",
    "          \"unit\":\"r_mm\", }\n",
    "ax = jupyter.plot1d(ai.integrate1d(**kwargs))\n",
    "ax.errorbar(*ai.sigma_clip_ng(error_model=\"azimuthal\", **kwargs), label=\"sigma-clip\")\n",
    "_=ax.legend()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "addressed-reverse",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using RTX A5000\n"
     ]
    }
   ],
   "source": [
    "ctx = pyopencl.create_some_context(interactive=False)\n",
    "print(f\"Using {ctx.devices[0].name}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "impaired-romantic",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING:pyFAI.ext.splitBBoxCSR:Pixel splitting desactivated !\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of high intensity pixels at stage #3: 31232\n",
      "Number of peaks identified at stage #6: 363\n"
     ]
    }
   ],
   "source": [
    "unit = units.to_unit(\"r_mm\")\n",
    "image_size = det.shape[0] * det.shape[1]\n",
    "integrator = ai.setup_CSR(ai.detector.shape, 1000, mask=mask, unit=unit, split=\"no\", scale=False)\n",
    "polarization = ai._cached_array[\"last_polarization\"]\n",
    "pf = OCL_PeakFinder(integrator.lut, \n",
    "                     image_size=image_size,\n",
    "                     bin_centers=integrator.bin_centers,\n",
    "                     radius=ai._cached_array[unit.name.split(\"_\")[0] + \"_center\"],\n",
    "                     mask=mask,\n",
    "                     ctx=ctx,\n",
    "#                      block_size=512,\n",
    "                     unit=unit) \n",
    "kwargs = {\"data\":fimg.data, \n",
    "          \"error_model\":\"azimuthal\", \n",
    "          \"polarization\":polarization.array,\n",
    "          \"polarization_checksum\": polarization.checksum}\n",
    "print(f\"Number of high intensity pixels at stage #3: {pf.count(**kwargs ,cycle=5, cutoff_pick=3.0)}\\n\\\n",
    "Number of peaks identified at stage #6: {pf._count8(**kwargs, cycle=5, cutoff_pick=3.0)}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "linear-borough",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "5.36 ms ± 48 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
      "\n",
      "OpenCL kernel profiling statistics in milliseconds for: OCL_PeakFinder\n",
      "                                       Kernel name (count):      min   median      max     mean      std\n",
      "                               copy raw H->D image (  811):    2.359    2.422    3.133    2.432    0.060\n",
      "                                 cast s32_to_float (  811):    0.081    0.084    0.105    0.084    0.002\n",
      "                                         memset_ng (  811):    0.003    0.003    0.004    0.003    0.000\n",
      "                                       corrections (  811):    0.270    0.272    0.291    0.272    0.001\n",
      "                                   csr_sigma_clip4 (  811):    1.766    1.795    1.834    1.795    0.010\n",
      "                                    memset counter (  811):    0.002    0.003    0.004    0.003    0.000\n",
      "                                       peak_search (  811):    0.313    0.316    0.324    0.317    0.002\n",
      "                                 copy D->H counter (  811):    0.001    0.001    0.008    0.001    0.000\n",
      "________________________________________________________________________________\n",
      "                       Total OpenCL execution time        : 3979.800ms\n"
     ]
    }
   ],
   "source": [
    "# Performance measurement of the pixel recording (stage 1->3)\n",
    "pf.reset_log()\n",
    "pf.set_profiling(True)\n",
    "%timeit pf.count(**kwargs, cycle=3, cutoff_pick=3, noise=1)\n",
    "print(\"\\n\".join(pf.log_profile(True)))\n",
    "pf.set_profiling(False)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fundamental-submission",
   "metadata": {},
   "source": [
    "The overhead from calling OpenCL from Python is as low as 8%"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "dominant-quantum",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "5.59 ms ± 60.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
      "\n",
      "OpenCL kernel profiling statistics in milliseconds for: OCL_PeakFinder\n",
      "                                       Kernel name (count):      min   median      max     mean      std\n",
      "                               copy raw H->D image (  811):    2.357    2.402    3.094    2.427    0.078\n",
      "                                 cast s32_to_float (  811):    0.077    0.080    0.101    0.080    0.002\n",
      "                                         memset_ng (  811):    0.003    0.003    0.006    0.003    0.000\n",
      "                                       corrections (  811):    0.271    0.272    0.294    0.272    0.001\n",
      "                                   csr_sigma_clip4 (  811):    1.766    1.795    1.819    1.795    0.009\n",
      "                                    memset counter (  811):    0.002    0.003    0.004    0.003    0.000\n",
      "                                       peakfinder8 (  811):    0.475    0.477    0.487    0.477    0.001\n",
      "                                 copy D->H counter (  811):    0.001    0.001    0.002    0.001    0.000\n",
      "                                   copy D->H index (  811):    0.001    0.001    0.002    0.001    0.000\n",
      "                               copy D->H intensity (  811):    0.001    0.001    0.002    0.001    0.000\n",
      "                               copy D->H position0 (  811):    0.001    0.001    0.001    0.001    0.000\n",
      "                               copy D->H position1 (  811):    0.001    0.001    0.002    0.001    0.000\n",
      "________________________________________________________________________________\n",
      "                       Total OpenCL execution time        : 4106.067ms\n"
     ]
    }
   ],
   "source": [
    "# Performance measurement of the pixel recording (stage 1->6)\n",
    "pf.reset_log()\n",
    "pf.set_profiling(True)\n",
    "%timeit res8=pf.peakfinder8(**kwargs, cycle=3, cutoff_pick=3, noise=1, connected=3, patch_size=3)\n",
    "print(\"\\n\".join(pf.log_profile(True)))\n",
    "pf.set_profiling(False)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "confused-glucose",
   "metadata": {},
   "source": [
    "The overhead from calling OpenCL from Python is as low as 10% (lower performances due to memory allocation)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "green-advancement",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "155 [('index', '<i4'), ('intensity', '<f4'), ('pos0', '<f4'), ('pos1', '<f4')]\n"
     ]
    }
   ],
   "source": [
    "# Visualization of the performances:\n",
    "res8 = pf.peakfinder8(fimg.data, error_model=\"azimuthal\", \n",
    "                      cycle=3, cutoff_pick=3, noise=2, connected=9, patch_size=5)\n",
    "print(len(res8), res8.dtype)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "essential-january",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = 'image/png';\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.which === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.which;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which !== 17) {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    if (event.altKey && event.which !== 18) {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    if (event.shiftKey && event.which !== 16) {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data']);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"1000\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "width = fimg.shape[-1]\n",
    "y = res8[\"index\"] // width\n",
    "x = res8[\"index\"] % width\n",
    "fig, ax = subplots(1, 2, figsize=(10,5))\n",
    "jupyter.display(dimg, ax=ax[0])\n",
    "jupyter.display(dimg, ax=ax[1])\n",
    "ax[0].plot(x, y, \".\", label=\"maxi\")\n",
    "ax[1].plot(x, y, \".\")\n",
    "ax[0].plot(res8[\"pos1\"], res8[\"pos0\"], \".g\", label=\"peak\")\n",
    "ax[1].plot(res8[\"pos1\"], res8[\"pos0\"], \".g\")\n",
    "ax[1].set_xlim(1500, 1800)\n",
    "ax[1].set_ylim(850, 1020)\n",
    "_=ax[0].legend()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "cooked-flower",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = 'image/png';\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.which === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.which;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which !== 17) {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    if (event.altKey && event.which !== 18) {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    if (event.shiftKey && event.which !== 16) {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data']);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"640\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig,ax = subplots()\n",
    "res=ax.hist(res8[\"intensity\"], 100, )"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "solar-paraguay",
   "metadata": {},
   "source": [
    "## Comparison with the original \"peakfinder8\" \n",
    "\n",
    "This algorithm has a python wrapper available from \n",
    "https://github.com/tjlane/peakfinder8\n",
    "\n",
    "The next cells installs a local version of the Cython-binded peakfinder8 from github. \n",
    "\n",
    "Nota: This is a quick & dirty solution."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "excellent-prison",
   "metadata": {},
   "outputs": [],
   "source": [
    "targeturl = \"https://github.com/tjlane/peakfinder8\"\n",
    "targetdir = posixpath.split(targeturl)[-1]\n",
    "if os.path.exists(targetdir):\n",
    "    shutil.rmtree(targetdir, ignore_errors=True)\n",
    "pwd = os.getcwd()\n",
    "try:\n",
    "    os.system(\"git clone \" + targeturl)\n",
    "    os.chdir(targetdir)\n",
    "    os.system(sys.executable + \" setup.py build\")    \n",
    "finally:\n",
    "    os.chdir(pwd)\n",
    "sys.path.append(pwd+\"/\"+glob.glob(f\"{targetdir}/build/lib*\")[0])\n",
    "from ssc.peakfinder8_extension import peakfinder_8"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "false-space",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 24.3 ms, sys: 8.01 ms, total: 32.3 ms\n",
      "Wall time: 31.1 ms\n"
     ]
    }
   ],
   "source": [
    "%%time \n",
    "#Create some compatibility layer:\n",
    "img = fimg.data.astype(\"float32\")\n",
    "r = ai._cached_array['r_center'].astype(\"float32\")\n",
    "# r = numpy.ones_like(img)\n",
    "imask = (1-mask).astype(\"int8\")\n",
    "max_num_peaks = 1000\n",
    "asic_nx = img.shape[-1]\n",
    "asic_ny = img.shape[0]\n",
    "nasics_x = 1\n",
    "nasics_y = 1\n",
    "adc_threshold = 2.0\n",
    "minimum_snr = 3.0\n",
    "min_pixel_count = 9\n",
    "max_pixel_count = 999\n",
    "local_bg_radius = 3 \n",
    "accumulated_shots = 1\n",
    "min_res = 0\n",
    "max_res = 3000\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "broadband-turkish",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 139 ms, sys: 4.23 ms, total: 143 ms\n",
      "Wall time: 142 ms\n"
     ]
    }
   ],
   "source": [
    "%%time \n",
    "ref = peakfinder_8(max_num_peaks,\n",
    "                   img, imask, r, \n",
    "                   asic_nx, asic_ny, nasics_x, nasics_y, \n",
    "                   adc_threshold, minimum_snr,\n",
    "                   min_pixel_count, max_pixel_count, local_bg_radius)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "parallel-slave",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "129 ms ± 3.02 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
     ]
    }
   ],
   "source": [
    "%%timeit\n",
    "peakfinder_8(max_num_peaks,\n",
    "               img, imask, r, \n",
    "               asic_nx, asic_ny, nasics_x, nasics_y, \n",
    "               adc_threshold, minimum_snr,\n",
    "               min_pixel_count, max_pixel_count, local_bg_radius)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "lucky-kingston",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of peak found:  995 995 995\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "21.31715771230503"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print(\"Number of peak found: \", len(ref[0]), len(ref[1]), len(ref[2]))\n",
    "123/5.77"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "packed-wallpaper",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = 'image/png';\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.which === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.which;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which !== 17) {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    if (event.altKey && event.which !== 18) {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    if (event.shiftKey && event.which !== 16) {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data']);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"1000\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "#Display the peaks\n",
    "fig, ax = subplots(1, 2, figsize=(10,5))\n",
    "jupyter.display(dimg, ax=ax[0])\n",
    "jupyter.display(dimg, ax=ax[1])\n",
    "ax[0].plot(ref[0], ref[1], \".g\")\n",
    "ax[1].plot(ref[0], ref[1], \".g\")\n",
    "ax[1].set_xlim(1500, 1800)\n",
    "ax[1].set_ylim(850, 1020)\n",
    "pass"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "periodic-opera",
   "metadata": {},
   "source": [
    "## Conclusion\n",
    "\n",
    "The re-implementation of *peakfinder8* in pyFAI takes advantage of the many parallel threads available on GPU which makes it 20 times faster than the original implementation in C++. Despite this algorithm has been re-designed for GPU, it can also run on CPU but it would not be optimized there thus it is likely to be slower.\n",
    "\n",
    "The results obtained with the Python/OpenCL implementation looks better, this is probably due to a slightly different threshold $I > mean + max(N*sigma, noise)$ instead of $I > max(noise, mean + N*sigma)$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "handmade-morning",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total execution time: 23.137s\n"
     ]
    }
   ],
   "source": [
    "print(f\"Total execution time: {time.perf_counter()-start_time:.3f}s\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}