Source code for

# coding: utf-8
# /*##########################################################################
# Copyright (C) 2016-2021 European Synchrotron Radiation Facility
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# ############################################################################*/
"""This module provides a h5py-like API to access SpecFile data.

API description

Specfile data structure exposed by this API:


          title = "…"
          start_time = "…"
                  file_header = "…"
                  scan_header = "…"
                  motor_name = value

                  data = …
                  calibration = …
                  channels = …
                  preset_time = …
                  elapsed_time = …
                  live_time = …


              colname0 = …
              colname1 = …

                   data -> /1.1/instrument/mca_0/data
                   info -> /1.1/instrument/mca_0/

              ub_matrix = …
              unit_cell = …
              unit_cell_abc = …
              unit_cell_alphabetagamma = …

``file_header`` and ``scan_header`` are the raw headers as they
appear in the original file, as a string of lines separated by newline (``\\n``) characters.

The title is the content of the ``#S`` scan header line without the leading
``#S`` and without the scan number (e.g ``"ascan  ss1vo -4.55687 -0.556875  40 0.2"``).

The start time is converted to ISO8601 format (``"2016-02-23T22:49:05Z"``),
if the original date format is standard.

Numeric datasets are stored in *float32* format, except for scalar integers
which are stored as *int64*.

Motor positions (e.g. ``/1.1/instrument/positioners/motor_name``) can be
1D numpy arrays if they are measured as scan data, or else scalars as defined
on ``#P`` scan header lines. A simple test is done to check if the motor name
is also a data column header defined in the ``#L`` scan header line.

Scan data  (e.g. ``/1.1/measurement/colname0``) is accessed by column,
the dataset name ``colname0`` being the column label as defined in the ``#L``
scan header line.

If a ``/`` character is present in a column label or in a motor name in the
original SPEC file, it will be substituted with a ``%`` character in the
corresponding dataset name.

MCA data is exposed as a 2D numpy array containing all spectra for a given
analyser. The number of analysers is calculated as the number of MCA spectra
per scan data line. Demultiplexing is then performed to assign the correct
spectra to a given analyser.

MCA calibration is an array of 3 scalars, from the ``#@CALIB`` header line.
It is identical for all MCA analysers, as there can be only one
``#@CALIB`` line per scan.

MCA channels is an array containing all channel numbers. This information is
computed from the ``#@CHANN`` scan header line (if present), or computed from
the shape of the first spectrum in a scan (``[0, … len(first_spectrum] - 1]``).

Accessing data

Data and groups are accessed in :mod:`h5py` fashion::

    from import SpecH5

    # Open a SpecFile
    sfh5 = SpecH5("test.dat")

    # using SpecH5 as a regular group to access scans
    scan1group = sfh5["1.1"]
    instrument_group = scan1group["instrument"]

    # alternative: full path access
    measurement_group = sfh5["/1.1/measurement"]

    # accessing a scan data column by name as a 1D numpy array
    data_array = measurement_group["Pslit HGap"]

    # accessing all mca-spectra for one MCA device
    mca_0_spectra = measurement_group["mca_0/data"]

:class:`SpecH5` files and groups provide a :meth:`keys` method::

    >>> sfh5.keys()
    ['96.1', '97.1', '98.1']
    >>> sfh5['96.1'].keys()
    ['title', 'start_time', 'instrument', 'measurement']

They can also be treated as iterators:

.. code-block:: python

    from import is_dataset

    for scan_group in SpecH5("test.dat"):
        dataset_names = [ in scan_group["measurement"] if
        print("Found data columns in scan " +
        print(", ".join(dataset_names))

You can test for existence of data or groups::

    >>> "/1.1/measurement/Pslit HGap" in sfh5
    >>> "positioners" in sfh5["/2.1/instrument"]
    >>> "spam" in sfh5["1.1"]

.. note::

    Text used to be stored with a dtype ``numpy.string_`` in silx versions
    prior to *0.7.0*. The type ``numpy.string_`` is a byte-string format.
    The consequence of this is that you had to decode strings before using
    them in **Python 3**::

        >>> from import SpecH5
        >>> sfh5 = SpecH5("31oct98.dat")
        >>> sfh5["/68.1/title"]
        b'68  ascan  tx3 -28.5 -24.5  20 0.5'
        >>> sfh5["/68.1/title"].decode()
        '68  ascan  tx3 -28.5 -24.5  20 0.5'

    From silx version *0.7.0* onwards, text is now stored as unicode. This
    corresponds to the default text type in python 3, and to the *unicode*
    type in Python 2.

    To be on the safe side, you can test for the presence of a *decode*
    attribute, to ensure that you always work with unicode text::

        >>> title = sfh5["/68.1/title"]
        >>> if hasattr(title, "decode"):
        ...     title = title.decode()


import datetime
import logging
import re
import io

import h5py
import numpy

from silx import version as silx_version
from .specfile import SpecFile, SfErrColNotFound
from . import commonh5

__authors__ = ["P. Knobel", "D. Naudet"]
__license__ = "MIT"
__date__ = "17/07/2018"

logger1 = logging.getLogger(__name__)

text_dtype = h5py.special_dtype(vlen=str)

def to_h5py_utf8(str_list):
    """Convert a string or a list of strings to a numpy array of
    unicode strings that can be written to HDF5 as utf-8.

    This ensures that the type will be consistent between python 2 and
    python 3, if attributes or datasets are saved to an HDF5 file.
    return numpy.array(str_list, dtype=text_dtype)

def _get_number_of_mca_analysers(scan):
    :param SpecFile sf: :class:`SpecFile` instance
    number_of_mca_spectra = len(scan.mca)
    # is transposed
    number_of_data_lines =[1]

    if not number_of_data_lines == 0:
        # Number of MCA spectra must be a multiple of number of data lines
        assert number_of_mca_spectra % number_of_data_lines == 0
        return number_of_mca_spectra // number_of_data_lines
    elif number_of_mca_spectra:
        # Case of a scan without data lines, only MCA.
        # Our only option is to assume that the number of analysers
        # is the number of #@CHANN lines
        return len(scan.mca.channels)
        return 0

def _motor_in_scan(sf, scan_key, motor_name):
    :param sf: :class:`SpecFile` instance
    :param scan_key: Scan identification key (e.g. ``1.1``)
    :param motor_name: Name of motor as defined in file header lines
    :return: ``True`` if motor exists in scan, else ``False``
    :raise: ``KeyError`` if scan_key not found in SpecFile
    if scan_key not in sf:
        raise KeyError("Scan key %s " % scan_key +
                       "does not exist in SpecFile %s" % sf.filename)
    ret = motor_name in sf[scan_key].motor_names
    if not ret and "%" in motor_name:
        motor_name = motor_name.replace("%", "/")
        ret = motor_name in sf[scan_key].motor_names
    return ret

def _column_label_in_scan(sf, scan_key, column_label):
    :param sf: :class:`SpecFile` instance
    :param scan_key: Scan identification key (e.g. ``1.1``)
    :param column_label: Column label as defined in scan header
    :return: ``True`` if data column label exists in scan, else ``False``
    :raise: ``KeyError`` if scan_key not found in SpecFile
    if scan_key not in sf:
        raise KeyError("Scan key %s " % scan_key +
                       "does not exist in SpecFile %s" % sf.filename)
    ret = column_label in sf[scan_key].labels
    if not ret and "%" in column_label:
        column_label = column_label.replace("%", "/")
        ret = column_label in sf[scan_key].labels
    return ret

def _parse_UB_matrix(header_line):
    """Parse G3 header line and return UB matrix

    :param str header_line: G3 header line
    :return: UB matrix
    :raises ValueError: For malformed UB matrix header line
    values = list(map(float, header_line.split()))  # Can raise ValueError
    if len(values) < 9:
        raise ValueError("Not enough values in UB matrix")
    return numpy.array(values).reshape((1, 3, 3))

def _ub_matrix_in_scan(scan):
    """Return True if scan header has a G3 line and all values are not 0.

    :param scan: specfile.Scan instance
    :return: True or False
    header_line = scan.scan_header_dict.get("G3", None)
    if header_line is None:
        return False
        ub_matrix = _parse_UB_matrix(header_line)
    except ValueError:
        logger1.warning("Malformed G3 header line")
        return False
    return numpy.any(ub_matrix)

def _parse_unit_cell(header_line):
    """Parse G1 header line and return unit cell

    :param str header_line: G1 header line
    :return: unit cell
    :raises ValueError: For malformed unit cell header line
    values = list(map(float, header_line.split()[0:6]))  # can raise ValueError
    if len(values) < 6:
        raise ValueError("Not enough values in unit cell")
    return numpy.array(values).reshape((1, 6))

def _unit_cell_in_scan(scan):
    """Return True if scan header has a G1 line and all values are not 0.

    :param scan: specfile.Scan instance
    :return: True or False
    header_line = scan.scan_header_dict.get("G1", None)
    if header_line is None:
        return False
        unit_cell = _parse_unit_cell(header_line)
    except ValueError:
        logger1.warning("Malformed G1 header line")
        return False
    return numpy.any(unit_cell)

def _parse_ctime(ctime_lines, analyser_index=0):
    :param ctime_lines: e.g ``@CTIME %f %f %f``, first word ``@CTIME`` optional
        When multiple CTIME lines are present in a scan header, this argument
        is a concatenation of them separated by a ``\\n`` character.
    :param analyser_index: MCA device/analyser index, when multiple devices
        are in a scan.
    :return: (preset_time, live_time, elapsed_time)
    ctime_lines = ctime_lines.lstrip("@CTIME ")
    ctimes_lines_list = ctime_lines.split("\n")
    if len(ctimes_lines_list) == 1:
        # single @CTIME line for all devices
        ctime_line = ctimes_lines_list[0]
        ctime_line = ctimes_lines_list[analyser_index]
    if not len(ctime_line.split()) == 3:
        raise ValueError("Incorrect format for @CTIME header line " +
                         '(expected "@CTIME %f %f %f").')
    return list(map(float, ctime_line.split()))

def spec_date_to_iso8601(date, zone=None):
    """Convert SpecFile date to Iso8601.

    :param date: Date (see supported formats below)
    :type date: str
    :param zone: Time zone as it appears in a ISO8601 date

    Supported formats:

    * ``DDD MMM dd hh:mm:ss YYYY``
    * ``DDD YYYY/MM/dd hh:mm:ss YYYY``

    where `DDD` is the abbreviated weekday, `MMM` is the month abbreviated
    name, `MM` is the month number (zero padded), `dd` is the weekday number
    (zero padded) `YYYY` is the year, `hh` the hour (zero padded), `mm` the
    minute (zero padded) and `ss` the second (zero padded).
    All names are expected to be in english.


        >>> spec_date_to_iso8601("Thu Feb 11 09:54:35 2016")

        >>> spec_date_to_iso8601("Sat 2015/03/14 03:53:50")
    months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul',
              'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
    days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

    days_rx = '(?P<day>' + '|'.join(days) + ')'
    months_rx = '(?P<month>' + '|'.join(months) + ')'
    year_rx = r'(?P<year>\d{4})'
    day_nb_rx = r'(?P<day_nb>[0-3 ]\d)'
    month_nb_rx = r'(?P<month_nb>[0-1]\d)'
    hh_rx = r'(?P<hh>[0-2]\d)'
    mm_rx = r'(?P<mm>[0-5]\d)'
    ss_rx = r'(?P<ss>[0-5]\d)'
    tz_rx = r'(?P<tz>[+-]\d\d:\d\d){0,1}'

    # date formats must have either month_nb (1..12) or month (Jan, Feb, ...)
    re_tpls = ['{days} {months} {day_nb} {hh}:{mm}:{ss}{tz} {year}',
               '{days} {year}/{month_nb}/{day_nb} {hh}:{mm}:{ss}{tz}']

    grp_d = None

    for rx in re_tpls:
        full_rx = rx.format(days=days_rx,
        m = re.match(full_rx, date)

        if m:
            grp_d = m.groupdict()

    if not grp_d:
        raise ValueError('Date format not recognized : {0}'.format(date))

    year = grp_d['year']

    month = grp_d.get('month_nb')

    if not month:
        month = '{0:02d}'.format(months.index(grp_d.get('month')) + 1)

    day = grp_d['day_nb']

    tz = grp_d['tz']
    if not tz:
        tz = zone

    time = '{0}:{1}:{2}'.format(grp_d['hh'],

    full_date = '{0}-{1}-{2}T{3}{4}'.format(year,
                                            tz if tz else '')
    return full_date

def _demultiplex_mca(scan, analyser_index):
    """Return MCA data for a single analyser.

    Each MCA spectrum is a 1D array. For each analyser, there is one
    spectrum recorded per scan data line. When there are more than a single
    MCA analyser in a scan, the data will be multiplexed. For instance if
    there are 3 analysers, the consecutive spectra for the first analyser must
    be accessed as ``mca[0], mca[3], mca[6]…``.

    :param scan: :class:`Scan` instance containing the MCA data
    :param analyser_index: 0-based index referencing the analyser
    :type analyser_index: int
    :return: 2D numpy array containing all spectra for one analyser
    number_of_analysers = _get_number_of_mca_analysers(scan)
    number_of_spectra = len(scan.mca)
    number_of_spectra_per_analyser = number_of_spectra // number_of_analysers
    len_spectrum = len(scan.mca[analyser_index])

    mca_array = numpy.empty((number_of_spectra_per_analyser, len_spectrum))

    for i in range(number_of_spectra_per_analyser):
        mca_array[i, :] = scan.mca[analyser_index + i * number_of_analysers]

    return mca_array

# Node classes
[docs]class SpecH5Dataset(object): """This convenience class is to be inherited by all datasets, for compatibility purpose with code that tests for ``isinstance(obj, SpecH5Dataset)``. This legacy behavior is deprecated. The correct way to test if an object is a dataset is to use :meth:``. Datasets must also inherit :class:`SpecH5NodeDataset` or :class:`SpecH5LazyNodeDataset` which actually implement all the API.""" pass
[docs]class SpecH5NodeDataset(commonh5.Dataset, SpecH5Dataset): """This class inherits :class:`commonh5.Dataset`, to which it adds little extra functionality. The main additional functionality is the proxy behavior that allows to mimic the numpy array stored in this class. """ def __init__(self, name, data, parent=None, attrs=None): # get proper value types, to inherit from numpy # attributes (dtype, shape, size) if isinstance(data, str): # use unicode (utf-8 when saved to HDF5 output) value = to_h5py_utf8(data) elif isinstance(data, float): # use 32 bits for float scalars value = numpy.float32(data) elif isinstance(data, int): value = numpy.int_(data) else: # Enforce numpy array array = numpy.array(data) data_kind = array.dtype.kind if data_kind in ["S", "U"]: value = numpy.asarray(array, dtype=text_dtype) elif data_kind in ["f"]: value = numpy.asarray(array, dtype=numpy.float32) else: value = array commonh5.Dataset.__init__(self, name, value, parent, attrs)
[docs] def __getattr__(self, item): """Proxy to underlying numpy array methods. """ if hasattr(self[()], item): return getattr(self[()], item) raise AttributeError("SpecH5Dataset has no attribute %s" % item)
class SpecH5LazyNodeDataset(commonh5.LazyLoadableDataset, SpecH5Dataset): """This class inherits :class:`commonh5.LazyLoadableDataset`, to which it adds a proxy behavior that allows to mimic the numpy array stored in this class. The class has to be inherited and the :meth:`_create_data` method has to be implemented to return the numpy data exposed by the dataset. This factory method is only called once, when the data is needed. """ def __getattr__(self, item): """Proxy to underlying numpy array methods. """ if hasattr(self[()], item): return getattr(self[()], item) raise AttributeError("SpecH5Dataset has no attribute %s" % item) def _create_data(self): """ Factory to create the data exposed by the dataset when it is needed. It has to be implemented for the class to work. :rtype: numpy.ndarray """ raise NotImplementedError()
[docs]class SpecH5Group(object): """This convenience class is to be inherited by all groups, for compatibility purposes with code that tests for ``isinstance(obj, SpecH5Group)``. This legacy behavior is deprecated. The correct way to test if an object is a group is to use :meth:``. Groups must also inherit :class:``, which actually implements all the methods and attributes.""" pass
[docs]class SpecH5(commonh5.File, SpecH5Group): """This class opens a SPEC file and exposes it as a *h5py.File*. It inherits :class:`` (via :class:`commonh5.File`), which implements most of its API. """ def __init__(self, filename): """ :param filename: Path to SpecFile in filesystem :type filename: str """ if isinstance(filename, io.IOBase): # see filename = self._sf = SpecFile(filename) attrs = {"NX_class": to_h5py_utf8("NXroot"), "file_time": to_h5py_utf8(, "file_name": to_h5py_utf8(filename), "creator": to_h5py_utf8("silx spech5 %s" % silx_version)} commonh5.File.__init__(self, filename, attrs=attrs) for scan_key in self._sf.keys(): scan = self._sf[scan_key] scan_group = ScanGroup(scan_key, parent=self, scan=scan) self.add_node(scan_group)
[docs] def close(self): self._sf.close() self._sf = None
class ScanGroup(commonh5.Group, SpecH5Group): def __init__(self, scan_key, parent, scan): """ :param parent: parent Group :param str scan_key: Scan key (e.g. "1.1") :param scan: specfile.Scan object """ commonh5.Group.__init__(self, scan_key, parent=parent, attrs={"NX_class": to_h5py_utf8("NXentry")}) # take title in #S after stripping away scan number and spaces s_hdr_line = scan.scan_header_dict["S"] title = s_hdr_line.lstrip("0123456789").lstrip() self.add_node(SpecH5NodeDataset(name="title", data=to_h5py_utf8(title), parent=self)) if "D" in scan.scan_header_dict: try: start_time_str = spec_date_to_iso8601(scan.scan_header_dict["D"]) except (IndexError, ValueError): logger1.warning("Could not parse date format in scan %s header." + " Using original date not converted to ISO-8601", scan_key) start_time_str = scan.scan_header_dict["D"] elif "D" in scan.file_header_dict: logger1.warning("No #D line in scan %s header. " + "Using file header for start_time.", scan_key) try: start_time_str = spec_date_to_iso8601(scan.file_header_dict["D"]) except (IndexError, ValueError): logger1.warning("Could not parse date format in scan %s header. " + "Using original date not converted to ISO-8601", scan_key) start_time_str = scan.file_header_dict["D"] else: logger1.warning("No #D line in %s header. Setting date to empty string.", scan_key) start_time_str = "" self.add_node(SpecH5NodeDataset(name="start_time", data=to_h5py_utf8(start_time_str), parent=self)) self.add_node(InstrumentGroup(parent=self, scan=scan)) self.add_node(MeasurementGroup(parent=self, scan=scan)) if _unit_cell_in_scan(scan) or _ub_matrix_in_scan(scan): self.add_node(SampleGroup(parent=self, scan=scan)) class InstrumentGroup(commonh5.Group, SpecH5Group): def __init__(self, parent, scan): """ :param parent: parent Group :param scan: specfile.Scan object """ commonh5.Group.__init__(self, name="instrument", parent=parent, attrs={"NX_class": to_h5py_utf8("NXinstrument")}) self.add_node(InstrumentSpecfileGroup(parent=self, scan=scan)) self.add_node(PositionersGroup(parent=self, scan=scan)) num_analysers = _get_number_of_mca_analysers(scan) for anal_idx in range(num_analysers): self.add_node(InstrumentMcaGroup(parent=self, analyser_index=anal_idx, scan=scan)) class InstrumentSpecfileGroup(commonh5.Group, SpecH5Group): def __init__(self, parent, scan): commonh5.Group.__init__(self, name="specfile", parent=parent, attrs={"NX_class": to_h5py_utf8("NXcollection")}) self.add_node(SpecH5NodeDataset( name="file_header", data=to_h5py_utf8(scan.file_header), parent=self, attrs={})) self.add_node(SpecH5NodeDataset( name="scan_header", data=to_h5py_utf8(scan.scan_header), parent=self, attrs={})) class PositionersGroup(commonh5.Group, SpecH5Group): def __init__(self, parent, scan): commonh5.Group.__init__(self, name="positioners", parent=parent, attrs={"NX_class": to_h5py_utf8("NXcollection")}) dataset_info = [] # Store list of positioner's (name, value) is_error = False # True if error encountered for motor_name in scan.motor_names: safe_motor_name = motor_name.replace("/", "%") if motor_name in scan.labels and[0] > 0: # return a data column if one has the same label as the motor motor_value = scan.data_column_by_name(motor_name) else: # Take value from #P scan header. # (may return float("inf") if #P line is missing from scan hdr) try: motor_value = scan.motor_position_by_name(motor_name) except SfErrColNotFound: is_error = True motor_value = float('inf') dataset_info.append((safe_motor_name, motor_value)) if is_error: # Filter-out scalar values logger1.warning("Mismatching number of elements in #P and #O: Ignoring") dataset_info = [ (name, value) for name, value in dataset_info if not isinstance(value, float)] for name, value in dataset_info: self.add_node(SpecH5NodeDataset( name=name, data=value, parent=self)) class InstrumentMcaGroup(commonh5.Group, SpecH5Group): def __init__(self, parent, analyser_index, scan): name = "mca_%d" % analyser_index commonh5.Group.__init__(self, name=name, parent=parent, attrs={"NX_class": to_h5py_utf8("NXdetector")}) mcaDataDataset = McaDataDataset(parent=self, analyser_index=analyser_index, scan=scan) self.add_node(mcaDataDataset) spectrum_length = mcaDataDataset.shape[-1] mcaDataDataset = None if len(scan.mca.channels) == 1: # single @CALIB line applying to multiple devices calibration_dataset = scan.mca.calibration[0] channels_dataset = scan.mca.channels[0] else: calibration_dataset = scan.mca.calibration[analyser_index] channels_dataset = scan.mca.channels[analyser_index] channels_length = len(channels_dataset) if (channels_length > 1) and (spectrum_length > 0):"Spectrum and channels length mismatch") # this should always be the case if channels_length > spectrum_length: channels_dataset = channels_dataset[:spectrum_length] elif channels_length < spectrum_length: # only trust first channel and increment channel0 = channels_dataset[0] increment = channels_dataset[1] - channels_dataset[0] channels_dataset = numpy.linspace(channel0, channel0 + increment * spectrum_length, spectrum_length, endpoint=False) self.add_node(SpecH5NodeDataset(name="calibration", data=calibration_dataset, parent=self)) self.add_node(SpecH5NodeDataset(name="channels", data=channels_dataset, parent=self)) if "CTIME" in scan.mca_header_dict: ctime_line = scan.mca_header_dict['CTIME'] preset_time, live_time, elapsed_time = _parse_ctime(ctime_line, analyser_index) self.add_node(SpecH5NodeDataset(name="preset_time", data=preset_time, parent=self)) self.add_node(SpecH5NodeDataset(name="live_time", data=live_time, parent=self)) self.add_node(SpecH5NodeDataset(name="elapsed_time", data=elapsed_time, parent=self)) class McaDataDataset(SpecH5LazyNodeDataset): """Lazy loadable dataset for MCA data""" def __init__(self, parent, analyser_index, scan): commonh5.LazyLoadableDataset.__init__( self, name="data", parent=parent, attrs={"interpretation": to_h5py_utf8("spectrum"),}) self._scan = scan self._analyser_index = analyser_index self._shape = None self._num_analysers = _get_number_of_mca_analysers(self._scan) def _create_data(self): return _demultiplex_mca(self._scan, self._analyser_index) @property def shape(self): if self._shape is None: num_spectra_in_file = len(self._scan.mca) num_spectra_per_analyser = num_spectra_in_file // self._num_analysers len_spectrum = len(self._scan.mca[self._analyser_index]) self._shape = num_spectra_per_analyser, len_spectrum return self._shape @property def size(self): return, dtype=numpy.intp) @property def dtype(self): # we initialize the data with numpy.empty() without specifying a dtype # in _demultiplex_mca() return numpy.empty((1, )).dtype def __len__(self): return self.shape[0] def __getitem__(self, item): # optimization for fetching a single spectrum if data not already loaded if not self._is_initialized: if isinstance(item, int): if item < 0: # negative indexing item += len(self) return self._scan.mca[self._analyser_index + item * self._num_analysers] # accessing a slice or element of a single spectrum [i, j:k] try: spectrum_idx, channel_idx_or_slice = item assert isinstance(spectrum_idx, int) except (ValueError, TypeError, AssertionError): pass else: if spectrum_idx < 0: item += len(self) idx = self._analyser_index + spectrum_idx * self._num_analysers return self._scan.mca[idx][channel_idx_or_slice] return super(McaDataDataset, self).__getitem__(item) class MeasurementGroup(commonh5.Group, SpecH5Group): def __init__(self, parent, scan): """ :param parent: parent Group :param scan: specfile.Scan object """ commonh5.Group.__init__(self, name="measurement", parent=parent, attrs={"NX_class": to_h5py_utf8("NXcollection"),}) for label in scan.labels: safe_label = label.replace("/", "%") self.add_node(SpecH5NodeDataset(name=safe_label, data=scan.data_column_by_name(label), parent=self)) num_analysers = _get_number_of_mca_analysers(scan) for anal_idx in range(num_analysers): self.add_node(MeasurementMcaGroup(parent=self, analyser_index=anal_idx)) class MeasurementMcaGroup(commonh5.Group, SpecH5Group): def __init__(self, parent, analyser_index): basename = "mca_%d" % analyser_index commonh5.Group.__init__(self, name=basename, parent=parent, attrs={}) target_name ="measurement", "instrument") self.add_node(commonh5.SoftLink(name="data", path=target_name + "/data", parent=self)) self.add_node(commonh5.SoftLink(name="info", path=target_name, parent=self)) class SampleGroup(commonh5.Group, SpecH5Group): def __init__(self, parent, scan): """ :param parent: parent Group :param scan: specfile.Scan object """ commonh5.Group.__init__(self, name="sample", parent=parent, attrs={"NX_class": to_h5py_utf8("NXsample"),}) if _unit_cell_in_scan(scan): self.add_node(SpecH5NodeDataset(name="unit_cell", data=_parse_unit_cell(scan.scan_header_dict["G1"]), parent=self, attrs={"interpretation": to_h5py_utf8("scalar")})) self.add_node(SpecH5NodeDataset(name="unit_cell_abc", data=_parse_unit_cell(scan.scan_header_dict["G1"])[0, 0:3], parent=self, attrs={"interpretation": to_h5py_utf8("scalar")})) self.add_node(SpecH5NodeDataset(name="unit_cell_alphabetagamma", data=_parse_unit_cell(scan.scan_header_dict["G1"])[0, 3:6], parent=self, attrs={"interpretation": to_h5py_utf8("scalar")})) if _ub_matrix_in_scan(scan): self.add_node(SpecH5NodeDataset(name="ub_matrix", data=_parse_UB_matrix(scan.scan_header_dict["G3"]), parent=self, attrs={"interpretation": to_h5py_utf8("scalar")}))