# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2004-2018 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
"""Matplotlib Plot backend."""
from __future__ import division
__authors__ = ["V.A. Sole", "T. Vincent, H. Payno"]
__license__ = "MIT"
__date__ = "18/10/2017"
import logging
import datetime as dt
import numpy
from pkg_resources import parse_version as _parse_version
_logger = logging.getLogger(__name__)
from ... import qt
# First of all init matplotlib and set its backend
from ..matplotlib import FigureCanvasQTAgg
import matplotlib
from matplotlib.container import Container
from matplotlib.figure import Figure
from matplotlib.patches import Rectangle, Polygon
from matplotlib.image import AxesImage
from matplotlib.backend_bases import MouseEvent
from matplotlib.lines import Line2D
from matplotlib.collections import PathCollection, LineCollection
from matplotlib.ticker import Formatter, ScalarFormatter, Locator
from ..matplotlib.ModestImage import ModestImage
from . import BackendBase
from .._utils import FLOAT32_MINPOS
from .._utils.dtime_ticklayout import calcTicks, bestFormatString, timestamp
[docs]class NiceDateLocator(Locator):
    """
    Matplotlib Locator that uses Nice Numbers algorithm (adapted to dates)
    to find the tick locations. This results in the same number behaviour
    as when using the silx Open GL backend.
    Expects the data to be posix timestampes (i.e. seconds since 1970)
    """
    def __init__(self, numTicks=5, tz=None):
        """
        :param numTicks: target number of ticks
        :param datetime.tzinfo tz: optional time zone. None is local time.
        """
        super(NiceDateLocator, self).__init__()
        self.numTicks = numTicks
        self._spacing = None
        self._unit = None
        self.tz = tz
    @property
    def spacing(self):
        """ The current spacing. Will be updated when new tick value are made"""
        return self._spacing
    @property
    def unit(self):
        """ The current DtUnit. Will be updated when new tick value are made"""
        return self._unit
    def __call__(self):
        """Return the locations of the ticks"""
        vmin, vmax = self.axis.get_view_interval()
        return self.tick_values(vmin, vmax)
[docs]    def tick_values(self, vmin, vmax):
        """ Calculates tick values
        """
        if vmax < vmin:
            vmin, vmax = vmax, vmin
        # vmin and vmax should be timestamps (i.e. seconds since 1 Jan 1970)
        dtMin = dt.datetime.fromtimestamp(vmin, tz=self.tz)
        dtMax = dt.datetime.fromtimestamp(vmax, tz=self.tz)
        dtTicks, self._spacing, self._unit = \
            
calcTicks(dtMin, dtMax, self.numTicks)
        # Convert datetime back to time stamps.
        ticks = [timestamp(dtTick) for dtTick in dtTicks]
        return ticks  
class _MarkerContainer(Container):
    """Marker artists container supporting draw/remove and text position update
    :param artists:
        Iterable with either one Line2D or a Line2D and a Text.
        The use of an iterable if enforced by Container being
        a subclass of tuple that defines a specific __new__.
    :param x: X coordinate of the marker (None for horizontal lines)
    :param y: Y coordinate of the marker (None for vertical lines)
    """
    def __init__(self, artists, x, y):
        self.line = artists[0]
        self.text = artists[1] if len(artists) > 1 else None
        self.x = x
        self.y = y
        Container.__init__(self, artists)
    def draw(self, *args, **kwargs):
        """artist-like draw to broadcast draw to line and text"""
        self.line.draw(*args, **kwargs)
        if self.text is not None:
            self.text.draw(*args, **kwargs)
    def updateMarkerText(self, xmin, xmax, ymin, ymax):
        """Update marker text position and visibility according to plot limits
        :param xmin: X axis lower limit
        :param xmax: X axis upper limit
        :param ymin: Y axis lower limit
        :param ymax: Y axis upprt limit
        """
        if self.text is not None:
            visible = ((self.x is None or xmin <= self.x <= xmax) and
                       (self.y is None or ymin <= self.y <= ymax))
            self.text.set_visible(visible)
            if self.x is not None and self.y is None:  # vertical line
                delta = abs(ymax - ymin)
                if ymin > ymax:
                    ymax = ymin
                ymax -= 0.005 * delta
                self.text.set_y(ymax)
            if self.x is None and self.y is not None:  # Horizontal line
                delta = abs(xmax - xmin)
                if xmin > xmax:
                    xmax = xmin
                xmax -= 0.005 * delta
                self.text.set_x(xmax)
[docs]class BackendMatplotlib(BackendBase.BackendBase):
    """Base class for Matplotlib backend without a FigureCanvas.
    For interactive on screen plot, see :class:`BackendMatplotlibQt`.
    See :class:`BackendBase.BackendBase` for public API documentation.
    """
    def __init__(self, plot, parent=None):
        super(BackendMatplotlib, self).__init__(plot, parent)
        # matplotlib is handling keep aspect ratio at draw time
        # When keep aspect ratio is on, and one changes the limits and
        # ask them *before* next draw has been performed he will get the
        # limits without applying keep aspect ratio.
        # This attribute is used to ensure consistent values returned
        # when getting the limits at the expense of a replot
        self._dirtyLimits = True
        self._axesDisplayed = True
        self._matplotlibVersion = _parse_version(matplotlib.__version__)
        self.fig = Figure()
        self.fig.set_facecolor("w")
        self.ax = self.fig.add_axes([.15, .15, .75, .75], label="left")
        self.ax2 = self.ax.twinx()
        self.ax2.set_label("right")
        # disable the use of offsets
        try:
            self.ax.get_yaxis().get_major_formatter().set_useOffset(False)
            self.ax.get_xaxis().get_major_formatter().set_useOffset(False)
            self.ax2.get_yaxis().get_major_formatter().set_useOffset(False)
            self.ax2.get_xaxis().get_major_formatter().set_useOffset(False)
        except:
            _logger.warning('Cannot disabled axes offsets in %s ' \
                            
% matplotlib.__version__)
        
        # critical for picking!!!!
        self.ax2.set_zorder(0)
        self.ax2.set_autoscaley_on(True)
        self.ax.set_zorder(1)
        # this works but the figure color is left
        if self._matplotlibVersion < _parse_version('2'):
            self.ax.set_axis_bgcolor('none')
        else:
            self.ax.set_facecolor('none')
        self.fig.sca(self.ax)
        self._overlays = set()
        self._background = None
        self._colormaps = {}
        self._graphCursor = tuple()
        self._enableAxis('right', False)
        self._isXAxisTimeSeries = False
    # Add methods
    def addCurve(self, x, y, legend,
                 color, symbol, linewidth, linestyle,
                 yaxis,
                 xerror, yerror, z, selectable,
                 fill, alpha, symbolsize):
        for parameter in (x, y, legend, color, symbol, linewidth, linestyle,
                          yaxis, z, selectable, fill, alpha, symbolsize):
            assert parameter is not None
        assert yaxis in ('left', 'right')
        if (len(color) == 4 and
                type(color[3]) in [type(1), numpy.uint8, numpy.int8]):
            color = numpy.array(color, dtype=numpy.float) / 255.
        if yaxis == "right":
            axes = self.ax2
            self._enableAxis("right", True)
        else:
            axes = self.ax
        picker = 3 if selectable else None
        artists = []  # All the artists composing the curve
        # First add errorbars if any so they are behind the curve
        if xerror is not None or yerror is not None:
            if hasattr(color, 'dtype') and len(color) == len(x):
                errorbarColor = 'k'
            else:
                errorbarColor = color
            # On Debian 7 at least, Nx1 array yerr does not seems supported
            if (isinstance(yerror, numpy.ndarray) and yerror.ndim == 2 and
                    yerror.shape[1] == 1 and len(x) != 1):
                yerror = numpy.ravel(yerror)
            errorbars = axes.errorbar(x, y, label=legend,
                                      xerr=xerror, yerr=yerror,
                                      linestyle=' ', color=errorbarColor)
            artists += list(errorbars.get_children())
        if hasattr(color, 'dtype') and len(color) == len(x):
            # scatter plot
            if color.dtype not in [numpy.float32, numpy.float]:
                actualColor = color / 255.
            else:
                actualColor = color
            if linestyle not in ["", " ", None]:
                # scatter plot with an actual line ...
                # we need to assign a color ...
                curveList = axes.plot(x, y, label=legend,
                                      linestyle=linestyle,
                                      color=actualColor[0],
                                      linewidth=linewidth,
                                      picker=picker,
                                      marker=None)
                artists += list(curveList)
            scatter = axes.scatter(x, y,
                                   label=legend,
                                   color=actualColor,
                                   marker=symbol,
                                   picker=picker,
                                   s=symbolsize**2)
            artists.append(scatter)
            if fill:
                artists.append(axes.fill_between(
                    x, FLOAT32_MINPOS, y, facecolor=actualColor[0], linestyle=''))
        else:  # Curve
            curveList = axes.plot(x, y,
                                  label=legend,
                                  linestyle=linestyle,
                                  color=color,
                                  linewidth=linewidth,
                                  marker=symbol,
                                  picker=picker,
                                  markersize=symbolsize)
            artists += list(curveList)
            if fill:
                artists.append(
                    axes.fill_between(x, FLOAT32_MINPOS, y, facecolor=color))
        for artist in artists:
            artist.set_zorder(z)
            if alpha < 1:
                artist.set_alpha(alpha)
        return Container(artists)
    def addImage(self, data, legend,
                 origin, scale, z,
                 selectable, draggable,
                 colormap, alpha):
        # Non-uniform image
        # http://wiki.scipy.org/Cookbook/Histograms
        # Non-linear axes
        # http://stackoverflow.com/questions/11488800/non-linear-axes-for-imshow-in-matplotlib
        for parameter in (data, legend, origin, scale, z,
                          selectable, draggable):
            assert parameter is not None
        origin = float(origin[0]), float(origin[1])
        scale = float(scale[0]), float(scale[1])
        height, width = data.shape[0:2]
        picker = (selectable or draggable)
        # Debian 7 specific support
        # No transparent colormap with matplotlib < 1.2.0
        # Add support for transparent colormap for uint8 data with
        # colormap with 256 colors, linear norm, [0, 255] range
        if self._matplotlibVersion < _parse_version('1.2.0'):
            if (len(data.shape) == 2 and colormap.getName() is None and
                    colormap.getColormapLUT() is not None):
                colors = colormap.getColormapLUT()
                if (colors.shape[-1] == 4 and
                        not numpy.all(numpy.equal(colors[3], 255))):
                    # This is a transparent colormap
                    if (colors.shape == (256, 4) and
                            colormap.getNormalization() == 'linear' and
                            not colormap.isAutoscale() and
                            colormap.getVMin() == 0 and
                            colormap.getVMax() == 255 and
                            data.dtype == numpy.uint8):
                        # Supported case, convert data to RGBA
                        data = colors[data.reshape(-1)].reshape(
                            data.shape + (4,))
                    else:
                        _logger.warning(
                            'matplotlib %s does not support transparent '
                            'colormap.', matplotlib.__version__)
        if ((height * width) > 5.0e5 and
                origin == (0., 0.) and scale == (1., 1.)):
            imageClass = ModestImage
        else:
            imageClass = AxesImage
        # All image are shown as RGBA image
        image = imageClass(self.ax,
                           label="__IMAGE__" + legend,
                           interpolation='nearest',
                           picker=picker,
                           zorder=z,
                           origin='lower')
        if alpha < 1:
            image.set_alpha(alpha)
        # Set image extent
        xmin = origin[0]
        xmax = xmin + scale[0] * width
        if scale[0] < 0.:
            xmin, xmax = xmax, xmin
        ymin = origin[1]
        ymax = ymin + scale[1] * height
        if scale[1] < 0.:
            ymin, ymax = ymax, ymin
        image.set_extent((xmin, xmax, ymin, ymax))
        # Set image data
        if scale[0] < 0. or scale[1] < 0.:
            # For negative scale, step by -1
            xstep = 1 if scale[0] >= 0. else -1
            ystep = 1 if scale[1] >= 0. else -1
            data = data[::ystep, ::xstep]
        if self._matplotlibVersion < _parse_version('2.1'):
            # matplotlib 1.4.2 do not support float128
            dtype = data.dtype
            if dtype.kind == "f" and dtype.itemsize >= 16:
                _logger.warning("Your matplotlib version do not support "
                                "float128. Data converted to float64.")
                data = data.astype(numpy.float64)
        if data.ndim == 2:  # Data image, convert to RGBA image
            data = colormap.applyToData(data)
        image.set_data(data)
        self.ax.add_artist(image)
        return image
    def addItem(self, x, y, legend, shape, color, fill, overlay, z):
        xView = numpy.array(x, copy=False)
        yView = numpy.array(y, copy=False)
        if shape == "line":
            item = self.ax.plot(x, y, label=legend, color=color,
                                linestyle='-', marker=None)[0]
        elif shape == "hline":
            if hasattr(y, "__len__"):
                y = y[-1]
            item = self.ax.axhline(y, label=legend, color=color)
        elif shape == "vline":
            if hasattr(x, "__len__"):
                x = x[-1]
            item = self.ax.axvline(x, label=legend, color=color)
        elif shape == 'rectangle':
            xMin = numpy.nanmin(xView)
            xMax = numpy.nanmax(xView)
            yMin = numpy.nanmin(yView)
            yMax = numpy.nanmax(yView)
            w = xMax - xMin
            h = yMax - yMin
            item = Rectangle(xy=(xMin, yMin),
                             width=w,
                             height=h,
                             fill=False,
                             color=color)
            if fill:
                item.set_hatch('.')
            self.ax.add_patch(item)
        elif shape in ('polygon', 'polylines'):
            points = numpy.array((xView, yView)).T
            if shape == 'polygon':
                closed = True
            else:  # shape == 'polylines'
                closed = numpy.all(numpy.equal(points[0], points[-1]))
            item = Polygon(points,
                           closed=closed,
                           fill=False,
                           label=legend,
                           color=color)
            if fill and shape == 'polygon':
                item.set_hatch('/')
            self.ax.add_patch(item)
        else:
            raise NotImplementedError("Unsupported item shape %s" % shape)
        item.set_zorder(z)
        if overlay:
            item.set_animated(True)
            self._overlays.add(item)
        return item
    def addMarker(self, x, y, legend, text, color,
                  selectable, draggable,
                  symbol, constraint):
        legend = "__MARKER__" + legend
        textArtist = None
        xmin, xmax = self.getGraphXLimits()
        ymin, ymax = self.getGraphYLimits(axis='left')
        if x is not None and y is not None:
            line = self.ax.plot(x, y, label=legend,
                                linestyle=" ",
                                color=color,
                                marker=symbol,
                                markersize=10.)[-1]
            if text is not None:
                if symbol is None:
                    valign = 'baseline'
                else:
                    valign = 'top'
                    text = "  " + text
                textArtist = self.ax.text(x, y, text,
                                          color=color,
                                          horizontalalignment='left',
                                          verticalalignment=valign)
        elif x is not None:
            line = self.ax.axvline(x, label=legend, color=color)
            if text is not None:
                # Y position will be updated in updateMarkerText call
                textArtist = self.ax.text(x, 1., " " + text,
                                          color=color,
                                          horizontalalignment='left',
                                          verticalalignment='top')
        elif y is not None:
            line = self.ax.axhline(y, label=legend, color=color)
            if text is not None:
                # X position will be updated in updateMarkerText call
                textArtist = self.ax.text(1., y, " " + text,
                                          color=color,
                                          horizontalalignment='right',
                                          verticalalignment='top')
        else:
            raise RuntimeError('A marker must at least have one coordinate')
        if selectable or draggable:
            line.set_picker(5)
        # All markers are overlays
        line.set_animated(True)
        if textArtist is not None:
            textArtist.set_animated(True)
        artists = [line] if textArtist is None else [line, textArtist]
        container = _MarkerContainer(artists, x, y)
        container.updateMarkerText(xmin, xmax, ymin, ymax)
        self._overlays.add(container)
        return container
    def _updateMarkers(self):
        xmin, xmax = self.ax.get_xbound()
        ymin, ymax = self.ax.get_ybound()
        for item in self._overlays:
            if isinstance(item, _MarkerContainer):
                item.updateMarkerText(xmin, xmax, ymin, ymax)
    # Remove methods
    def remove(self, item):
        # Warning: It also needs to remove extra stuff if added as for markers
        self._overlays.discard(item)
        try:
            item.remove()
        except ValueError:
            pass  # Already removed e.g., in set[X|Y]AxisLogarithmic
    # Interaction methods
    def setGraphCursor(self, flag, color, linewidth, linestyle):
        if flag:
            lineh = self.ax.axhline(
                self.ax.get_ybound()[0], visible=False, color=color,
                linewidth=linewidth, linestyle=linestyle)
            lineh.set_animated(True)
            linev = self.ax.axvline(
                self.ax.get_xbound()[0], visible=False, color=color,
                linewidth=linewidth, linestyle=linestyle)
            linev.set_animated(True)
            self._graphCursor = lineh, linev
        else:
            if self._graphCursor is not None:
                lineh, linev = self._graphCursor
                lineh.remove()
                linev.remove()
                self._graphCursor = tuple()
    # Active curve
    def setCurveColor(self, curve, color):
        # Store Line2D and PathCollection
        for artist in curve.get_children():
            if isinstance(artist, (Line2D, LineCollection)):
                artist.set_color(color)
            elif isinstance(artist, PathCollection):
                artist.set_facecolors(color)
                artist.set_edgecolors(color)
            else:
                _logger.warning(
                    'setActiveCurve ignoring artist %s', str(artist))
    # Misc.
    def getWidgetHandle(self):
        return self.fig.canvas
    def _enableAxis(self, axis, flag=True):
        """Show/hide Y axis
        :param str axis: Axis name: 'left' or 'right'
        :param bool flag: Default, True
        """
        assert axis in ('right', 'left')
        axes = self.ax2 if axis == 'right' else self.ax
        axes.get_yaxis().set_visible(flag)
[docs]    def replot(self):
        """Do not perform rendering.
        Override in subclass to actually draw something.
        """
        # TODO images, markers? scatter plot? move in remove?
        # Right Y axis only support curve for now
        # Hide right Y axis if no line is present
        self._dirtyLimits = False
        if not self.ax2.lines:
            self._enableAxis('right', False) 
    def saveGraph(self, fileName, fileFormat, dpi):
        # fileName can be also a StringIO or file instance
        if dpi is not None:
            self.fig.savefig(fileName, format=fileFormat, dpi=dpi)
        else:
            self.fig.savefig(fileName, format=fileFormat)
        self._plot._setDirtyPlot()
    # Graph labels
    def setGraphTitle(self, title):
        self.ax.set_title(title)
    def setGraphXLabel(self, label):
        self.ax.set_xlabel(label)
    def setGraphYLabel(self, label, axis):
        axes = self.ax if axis == 'left' else self.ax2
        axes.set_ylabel(label)
    # Graph limits
    def setLimits(self, xmin, xmax, ymin, ymax, y2min=None, y2max=None):
        # Let matplotlib taking care of keep aspect ratio if any
        self._dirtyLimits = True
        self.ax.set_xlim(min(xmin, xmax), max(xmin, xmax))
        if y2min is not None and y2max is not None:
            if not self.isYAxisInverted():
                self.ax2.set_ylim(min(y2min, y2max), max(y2min, y2max))
            else:
                self.ax2.set_ylim(max(y2min, y2max), min(y2min, y2max))
        if not self.isYAxisInverted():
            self.ax.set_ylim(min(ymin, ymax), max(ymin, ymax))
        else:
            self.ax.set_ylim(max(ymin, ymax), min(ymin, ymax))
        self._updateMarkers()
    def getGraphXLimits(self):
        if self._dirtyLimits and self.isKeepDataAspectRatio():
            self.replot()  # makes sure we get the right limits
        return self.ax.get_xbound()
    def setGraphXLimits(self, xmin, xmax):
        self._dirtyLimits = True
        self.ax.set_xlim(min(xmin, xmax), max(xmin, xmax))
        self._updateMarkers()
    def getGraphYLimits(self, axis):
        assert axis in ('left', 'right')
        ax = self.ax2 if axis == 'right' else self.ax
        if not ax.get_visible():
            return None
        if self._dirtyLimits and self.isKeepDataAspectRatio():
            self.replot()  # makes sure we get the right limits
        return ax.get_ybound()
    def setGraphYLimits(self, ymin, ymax, axis):
        ax = self.ax2 if axis == 'right' else self.ax
        if ymax < ymin:
            ymin, ymax = ymax, ymin
        self._dirtyLimits = True
        if self.isKeepDataAspectRatio():
            # matplotlib keeps limits of shared axis when keeping aspect ratio
            # So x limits are kept when changing y limits....
            # Change x limits first by taking into account aspect ratio
            # and then change y limits.. so matplotlib does not need
            # to make change (to y) to keep aspect ratio
            xmin, xmax = ax.get_xbound()
            curYMin, curYMax = ax.get_ybound()
            newXRange = (xmax - xmin) * (ymax - ymin) / (curYMax - curYMin)
            xcenter = 0.5 * (xmin + xmax)
            ax.set_xlim(xcenter - 0.5 * newXRange, xcenter + 0.5 * newXRange)
        if not self.isYAxisInverted():
            ax.set_ylim(ymin, ymax)
        else:
            ax.set_ylim(ymax, ymin)
        self._updateMarkers()
    # Graph axes
    def setXAxisTimeZone(self, tz):
        super(BackendMatplotlib, self).setXAxisTimeZone(tz)
        # Make new formatter and locator with the time zone.
        self.setXAxisTimeSeries(self.isXAxisTimeSeries())
    def isXAxisTimeSeries(self):
        return self._isXAxisTimeSeries
    def setXAxisTimeSeries(self, isTimeSeries):
        self._isXAxisTimeSeries = isTimeSeries
        if self._isXAxisTimeSeries:
            # We can't use a matplotlib.dates.DateFormatter because it expects
            # the data to be in datetimes. Silx works internally with
            # timestamps (floats).
            locator = NiceDateLocator(tz=self.getXAxisTimeZone())
            self.ax.xaxis.set_major_locator(locator)
            self.ax.xaxis.set_major_formatter(
                NiceAutoDateFormatter(locator, tz=self.getXAxisTimeZone()))
        else:
            try:
                scalarFormatter = ScalarFormatter(useOffset=False)
            except:
                _logger.warning('Cannot disabled axes offsets in %s ' %
                                matplotlib.__version__)
                scalarFormatter = ScalarFormatter()
            self.ax.xaxis.set_major_formatter(scalarFormatter)
    def setXAxisLogarithmic(self, flag):
        # Workaround for matplotlib 2.1.0 when one tries to set an axis
        # to log scale with both limits <= 0
        # In this case a draw with positive limits is needed first
        if flag and self._matplotlibVersion >= _parse_version('2.1.0'):
            xlim = self.ax.get_xlim()
            if xlim[0] <= 0 and xlim[1] <= 0:
                self.ax.set_xlim(1, 10)
                self.draw()
        self.ax2.set_xscale('log' if flag else 'linear')
        self.ax.set_xscale('log' if flag else 'linear')
    def setYAxisLogarithmic(self, flag):
        # Workaround for matplotlib 2.0 issue with negative bounds
        # before switching to log scale
        if flag and self._matplotlibVersion >= _parse_version('2.0.0'):
            redraw = False
            for axis, dataRangeIndex in ((self.ax, 1), (self.ax2, 2)):
                ylim = axis.get_ylim()
                if ylim[0] <= 0 or ylim[1] <= 0:
                    dataRange = self._plot.getDataRange()[dataRangeIndex]
                    if dataRange is None:
                        dataRange = 1, 100  # Fallback
                    axis.set_ylim(*dataRange)
                    redraw = True
            if redraw:
                self.draw()
        self.ax2.set_yscale('log' if flag else 'linear')
        self.ax.set_yscale('log' if flag else 'linear')
    def setYAxisInverted(self, flag):
        if self.ax.yaxis_inverted() != bool(flag):
            self.ax.invert_yaxis()
    def isYAxisInverted(self):
        return self.ax.yaxis_inverted()
    def isKeepDataAspectRatio(self):
        return self.ax.get_aspect() in (1.0, 'equal')
    def setKeepDataAspectRatio(self, flag):
        self.ax.set_aspect(1.0 if flag else 'auto')
        self.ax2.set_aspect(1.0 if flag else 'auto')
    def setGraphGrid(self, which):
        self.ax.grid(False, which='both')  # Disable all grid first
        if which is not None:
            self.ax.grid(True, which=which)
    # Data <-> Pixel coordinates conversion
    def _mplQtYAxisCoordConversion(self, y):
        """Qt origin (top) to/from matplotlib origin (bottom) conversion.
        :rtype: float
        """
        height = self.fig.get_window_extent().height
        return height - y
    def dataToPixel(self, x, y, axis):
        ax = self.ax2 if axis == "right" else self.ax
        pixels = ax.transData.transform_point((x, y))
        xPixel, yPixel = pixels.T
        # Convert from matplotlib origin (bottom) to Qt origin (top)
        yPixel = self._mplQtYAxisCoordConversion(yPixel)
        return xPixel, yPixel
    def pixelToData(self, x, y, axis, check):
        ax = self.ax2 if axis == "right" else self.ax
        # Convert from Qt origin (top) to matplotlib origin (bottom)
        y = self._mplQtYAxisCoordConversion(y)
        inv = ax.transData.inverted()
        x, y = inv.transform_point((x, y))
        if check:
            xmin, xmax = self.getGraphXLimits()
            ymin, ymax = self.getGraphYLimits(axis=axis)
            if x > xmax or x < xmin or y > ymax or y < ymin:
                return None  # (x, y) is out of plot area
        return x, y
    def getPlotBoundsInPixels(self):
        bbox = self.ax.get_window_extent()
        # Warning this is not returning int...
        return (bbox.xmin,
                self._mplQtYAxisCoordConversion(bbox.ymax),
                bbox.width,
                bbox.height)
[docs]    def setAxesDisplayed(self, displayed):
        """Display or not the axes.
        :param bool displayed: If `True` axes are displayed. If `False` axes
            are not anymore visible and the margin used for them is removed.
        """
        BackendBase.BackendBase.setAxesDisplayed(self, displayed)
        if displayed:
            # show axes and viewbox rect
            self.ax.set_axis_on()
            self.ax2.set_axis_on()
            # set the default margins
            self.ax.set_position([.15, .15, .75, .75])
            self.ax2.set_position([.15, .15, .75, .75])
        else:
            # hide axes and viewbox rect
            self.ax.set_axis_off()
            self.ax2.set_axis_off()
            # remove external margins
            self.ax.set_position([0, 0, 1, 1])
            self.ax2.set_position([0, 0, 1, 1])
        self._plot._setDirtyPlot()  
[docs]class BackendMatplotlibQt(FigureCanvasQTAgg, BackendMatplotlib):
    """QWidget matplotlib backend using a QtAgg canvas.
    It adds fast overlay drawing and mouse event management.
    """
    _sigPostRedisplay = qt.Signal()
    """Signal handling automatic asynchronous replot"""
    def __init__(self, plot, parent=None):
        BackendMatplotlib.__init__(self, plot, parent)
        FigureCanvasQTAgg.__init__(self, self.fig)
        self.setParent(parent)
        self._limitsBeforeResize = None
        FigureCanvasQTAgg.setSizePolicy(
            self, qt.QSizePolicy.Expanding, qt.QSizePolicy.Expanding)
        FigureCanvasQTAgg.updateGeometry(self)
        # Make postRedisplay asynchronous using Qt signal
        self._sigPostRedisplay.connect(
            super(BackendMatplotlibQt, self).postRedisplay,
            qt.Qt.QueuedConnection)
        self._picked = None
        self.mpl_connect('button_press_event', self._onMousePress)
        self.mpl_connect('button_release_event', self._onMouseRelease)
        self.mpl_connect('motion_notify_event', self._onMouseMove)
        self.mpl_connect('scroll_event', self._onMouseWheel)
    def postRedisplay(self):
        self._sigPostRedisplay.emit()
    # Mouse event forwarding
    _MPL_TO_PLOT_BUTTONS = {1: 'left', 2: 'middle', 3: 'right'}
    def _onMousePress(self, event):
        self._plot.onMousePress(
            event.x, self._mplQtYAxisCoordConversion(event.y),
            self._MPL_TO_PLOT_BUTTONS[event.button])
    def _onMouseMove(self, event):
        if self._graphCursor:
            lineh, linev = self._graphCursor
            if event.inaxes != self.ax and lineh.get_visible():
                lineh.set_visible(False)
                linev.set_visible(False)
                self._plot._setDirtyPlot(overlayOnly=True)
            else:
                linev.set_visible(True)
                linev.set_xdata((event.xdata, event.xdata))
                lineh.set_visible(True)
                lineh.set_ydata((event.ydata, event.ydata))
                self._plot._setDirtyPlot(overlayOnly=True)
            # onMouseMove must trigger replot if dirty flag is raised
        self._plot.onMouseMove(
            event.x, self._mplQtYAxisCoordConversion(event.y))
    def _onMouseRelease(self, event):
        self._plot.onMouseRelease(
            event.x, self._mplQtYAxisCoordConversion(event.y),
            self._MPL_TO_PLOT_BUTTONS[event.button])
    def _onMouseWheel(self, event):
        self._plot.onMouseWheel(
            event.x, self._mplQtYAxisCoordConversion(event.y), event.step)
[docs]    def leaveEvent(self, event):
        """QWidget event handler"""
        self._plot.onMouseLeaveWidget() 
    # picking
    def _onPick(self, event):
        # TODO not very nice and fragile, find a better way?
        # Make a selection according to kind
        if self._picked is None:
            _logger.error('Internal picking error')
            return
        label = event.artist.get_label()
        if label.startswith('__MARKER__'):
            self._picked.append({'kind': 'marker', 'legend': label[10:]})
        elif label.startswith('__IMAGE__'):
            self._picked.append({'kind': 'image', 'legend': label[9:]})
        else:  # it's a curve, item have no picker for now
            if not isinstance(event.artist, (PathCollection, Line2D)):
                _logger.info('Unsupported artist, ignored')
                return
            self._picked.append({'kind': 'curve', 'legend': label,
                                 'indices': event.ind})
    def pickItems(self, x, y, kinds):
        self._picked = []
        # Weird way to do an explicit picking: Simulate a button press event
        mouseEvent = MouseEvent('button_press_event',
                                self, x, self._mplQtYAxisCoordConversion(y))
        cid = self.mpl_connect('pick_event', self._onPick)
        self.fig.pick(mouseEvent)
        self.mpl_disconnect(cid)
        picked = [p for p in self._picked if p['kind'] in kinds]
        self._picked = None
        return picked
    # replot control
    def resizeEvent(self, event):
        # Store current limits
        self._limitsBeforeResize = (
            self.ax.get_xbound(), self.ax.get_ybound(), self.ax2.get_ybound())
        FigureCanvasQTAgg.resizeEvent(self, event)
        if self.isKeepDataAspectRatio() or self._overlays or self._graphCursor:
            # This is needed with matplotlib 1.5.x and 2.0.x
            self._plot._setDirtyPlot()
    def _drawOverlays(self):
        """Draw overlays if any."""
        if self._overlays or self._graphCursor:
            # There is some overlays or crosshair
            # This assume that items are only on left/bottom Axes
            for item in self._overlays:
                self.ax.draw_artist(item)
            for item in self._graphCursor:
                self.ax.draw_artist(item)
[docs]    def draw(self):
        """Overload draw
        It performs a full redraw (including overlays) of the plot.
        It also resets background and emit limits changed signal.
        This is directly called by matplotlib for widget resize.
        """
        # Starting with mpl 2.1.0, toggling autoscale raises a ValueError
        # in some situations. See #1081, #1136, #1163,
        if self._matplotlibVersion >= _parse_version("2.0.0"):
            try:
                FigureCanvasQTAgg.draw(self)
            except ValueError as err:
                _logger.debug(
                    "ValueError caught while calling FigureCanvasQTAgg.draw: "
                    "'%s'", err)
        else:
            FigureCanvasQTAgg.draw(self)
        if self._overlays or self._graphCursor:
            # Save background
            self._background = self.copy_from_bbox(self.fig.bbox)
        else:
            self._background = None  # Reset background
        # Check if limits changed due to a resize of the widget
        if self._limitsBeforeResize is not None:
            xLimits, yLimits, yRightLimits = self._limitsBeforeResize
            self._limitsBeforeResize = None
            if (xLimits != self.ax.get_xbound() or
                    yLimits != self.ax.get_ybound()):
                self._updateMarkers()
            if xLimits != self.ax.get_xbound():
                self._plot.getXAxis()._emitLimitsChanged()
            if yLimits != self.ax.get_ybound():
                self._plot.getYAxis(axis='left')._emitLimitsChanged()
            if yRightLimits != self.ax2.get_ybound():
                self._plot.getYAxis(axis='right')._emitLimitsChanged()
        self._drawOverlays() 
    def replot(self):
        BackendMatplotlib.replot(self)
        dirtyFlag = self._plot._getDirtyPlot()
        if dirtyFlag == 'overlay':
            # Only redraw overlays using fast rendering path
            if self._background is None:
                self._background = self.copy_from_bbox(self.fig.bbox)
            self.restore_region(self._background)
            self._drawOverlays()
            self.blit(self.fig.bbox)
        elif dirtyFlag:  # Need full redraw
            self.draw()
        # Workaround issue of rendering overlays with some matplotlib versions
        if (_parse_version('1.5') <= self._matplotlibVersion < _parse_version('2.1') and
                not hasattr(self, '_firstReplot')):
            self._firstReplot = False
            if self._overlays or self._graphCursor:
                qt.QTimer.singleShot(0, self.draw)  # Request async draw
    # cursor
    _QT_CURSORS = {
        None: qt.Qt.ArrowCursor,
        BackendBase.CURSOR_DEFAULT: qt.Qt.ArrowCursor,
        BackendBase.CURSOR_POINTING: qt.Qt.PointingHandCursor,
        BackendBase.CURSOR_SIZE_HOR: qt.Qt.SizeHorCursor,
        BackendBase.CURSOR_SIZE_VER: qt.Qt.SizeVerCursor,
        BackendBase.CURSOR_SIZE_ALL: qt.Qt.SizeAllCursor,
    }
    def setGraphCursorShape(self, cursor):
        cursor = self._QT_CURSORS[cursor]
        FigureCanvasQTAgg.setCursor(self, qt.QCursor(cursor))